?? data
字號:
0 --> =0 2D, =1 AXISYMMETRIC0 --> =0 Euler, =1 Navier-Stokes1.e2 --> Reynolds by meter (the mesh is given in meter)0. --> inverse of Froude number (=0 no gravity)0.96 --> inflow Mach number1. --> ratio pout/pin1 --> wall =1 newmann b.c.(adiabatic wall), =2 (isothermal wall)300. --> inflow temperature (in Kelvin) for Sutherland laws288. --> if isothermal walls , wall temperature (in Kelvin)0.0 --> angle of attack1 --> Euler fluxes =1 roe, =2 osher,=3 kinetic3 --> nordre = 1st order scheme, =2 2ndorder, =3 limited 2nd order1 --> =0 global time steping (unsteady), =1 local Euler, =2 local N.S.1. --> cfl LastIteration --> number of time step500 --> frequence for the solution to be saved1.e10 --> maximum physical time for run (for unsteady problems)-4. --> order of magnitude for the residual to be reduced (for steady problems)INIT --> =0 start with uniform solution, =1 restart from INIT_NScccc turbulence ccccccccccccccccccccccccccccccccccccccccccccccccccccccc0 --> =0 no turbulence model, =1 k-epsilon model0 --> =0 two-layer technique, =1 wall laws1.e-2 --> delta in wall laws or limit of the one-eq. model. (in meter)0 --> =0 start from uniform solution for k-epsilon, =1 from INIT_KE-1.e10 1.e10 -1.e10 1.e10 --> xtmin,xtmax,ytmin,ytmax (BOX for k-epsilon r.h.s)
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -