亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ransac.m

?? hopfield neural network for binary image recognition
?? M
字號:
% RANSAC - Robustly fits a model to data with the RANSAC algorithm%% Usage:%% [M, inliers] = ransac(x, fittingfn, distfn, degenfn s, t, feedback, ...%                       maxDataTrials, maxTrials)%% Arguments:%     x         - Data sets to which we are seeking to fit a model M%                 It is assumed that x is of size [d x Npts]%                 where d is the dimensionality of the data and Npts is%                 the number of data points.%%     fittingfn - Handle to a function that fits a model to s%                 data from x.  It is assumed that the function is of the%                 form: %                    M = fittingfn(x)%                 Note it is possible that the fitting function can return%                 multiple models (for example up to 3 fundamental matrices%                 can be fitted to 7 matched points).  In this case it is%                 assumed that the fitting function returns a cell array of%                 models.%                 If this function cannot fit a model it should return M as%                 an empty matrix.%%     distfn    - Handle to a function that evaluates the%                 distances from the model to data x.%                 It is assumed that the function is of the form:%                    [inliers, M] = distfn(M, x, t)%                 This function must evaluate the distances between points%                 and the model returning the indices of elements in x that%                 are inliers, that is, the points that are within distance%                 't' of the model.  Additionally, if M is a cell array of%                 possible models 'distfn' will return the model that has the%                 most inliers.  If there is only one model this function%                 must still copy the model to the output.  After this call M%                 will be a non-cell object representing only one model. %%     degenfn   - Handle to a function that determines whether a%                 set of datapoints will produce a degenerate model.%                 This is used to discard random samples that do not%                 result in useful models.%                 It is assumed that degenfn is a boolean function of%                 the form: %                    r = degenfn(x)%                 It may be that you cannot devise a test for degeneracy in%                 which case you should write a dummy function that always%                 returns a value of 1 (true) and rely on 'fittingfn' to return%                 an empty model should the data set be degenerate.%%     s         - The minimum number of samples from x required by%                 fittingfn to fit a model.%%     t         - The distance threshold between a data point and the model%                 used to decide whether the point is an inlier or not.%%     feedback  - An optional flag 0/1. If set to one the trial count and the%                 estimated total number of trials required is printed out at%                 each step.  Defaults to 0.%%     maxDataTrials - Maximum number of attempts to select a non-degenerate%                     data set. This parameter is optional and defaults to 100.%%     maxTrials - Maximum number of iterations. This parameter is optional and%                 defaults to 1000.%% Returns:%     M         - The model having the greatest number of inliers.%     inliers   - An array of indices of the elements of x that were%                 the inliers for the best model.%% For an example of the use of this function see RANSACFITHOMOGRAPHY or% RANSACFITPLANE % References:%    M.A. Fishler and  R.C. Boles. "Random sample concensus: A paradigm%    for model fitting with applications to image analysis and automated%    cartography". Comm. Assoc. Comp, Mach., Vol 24, No 6, pp 381-395, 1981%%    Richard Hartley and Andrew Zisserman. "Multiple View Geometry in%    Computer Vision". pp 101-113. Cambridge University Press, 2001% Copyright (c) 2003-2006 Peter Kovesi% School of Computer Science & Software Engineering% The University of Western Australia% pk at csse uwa edu au    % http://www.csse.uwa.edu.au/~pk% % Permission is hereby granted, free of charge, to any person obtaining a copy% of this software and associated documentation files (the "Software"), to deal% in the Software without restriction, subject to the following conditions:% % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software.%% The Software is provided "as is", without warranty of any kind.%% May      2003 - Original version% February 2004 - Tidied up.% August   2005 - Specification of distfn changed to allow model fitter to%                 return multiple models from which the best must be selected% Sept     2006 - Random selection of data points changed to ensure duplicate%                 points are not selected.% February 2007 - Jordi Ferrer: Arranged warning printout.%                               Allow maximum trials as optional parameters.%                               Patch the problem when non-generated data%                               set is not given in the first iteration.% August   2008 - 'feedback' parameter restored to argument list and other%                 breaks in code introduced in last update fixed.% function [M, inliers] = ransac(x, fittingfn, distfn, degenfn, s, t, feedback, ...                               maxDataTrials, MaxTrials)    % Test number of parameters    error ( nargchk ( 6, 9, nargin ) );    error ( nargoutchk ( 2, 2, nargout ) );        if nargin < 9; maxTrials = 1000;    end;     if nargin < 8; maxDataTrials = 100; end;     if nargin < 7; feedback = 0;        end;        [rows, npts] = size(x);                         p = 0.99;         % Desired probability of choosing at least one sample                      % free from outliers    bestM = NaN;      % Sentinel value allowing detection of solution failure.    trialcount = 0;    bestscore =  0;        N = 1;            % Dummy initialisation for number of trials.        while N > trialcount                % Select at random s datapoints to form a trial model, M.        % In selecting these points we have to check that they are not in        % a degenerate configuration.        degenerate = 1;        count = 1;        while degenerate            % Generate s random indicies in the range 1..npts            % (If you do not have the statistics toolbox, or are using Octave,            % use the function RANDOMSAMPLE from my webpage)            ind = randsample(npts, s);            % Test that these points are not a degenerate configuration.            degenerate = feval(degenfn, x(:,ind));                        if ~degenerate                 % Fit model to this random selection of data points.                % Note that M may represent a set of models that fit the data in                % this case M will be a cell array of models                M = feval(fittingfn, x(:,ind));                                % Depending on your problem it might be that the only way you                % can determine whether a data set is degenerate or not is to                % try to fit a model and see if it succeeds.  If it fails we                % reset degenerate to true.                if isempty(M)                    degenerate = 1;                end            end                        % Safeguard against being stuck in this loop forever            count = count + 1;            if count > maxDataTrials                warning('Unable to select a nondegenerate data set');                break            end        end                % Once we are out here we should have some kind of model...                % Evaluate distances between points and model returning the indices        % of elements in x that are inliers.  Additionally, if M is a cell        % array of possible models 'distfn' will return the model that has        % the most inliers.  After this call M will be a non-cell object        % representing only one model.        [inliers, M] = feval(distfn, M, x, t);                % Find the number of inliers to this model.        ninliers = length(inliers);                if ninliers > bestscore    % Largest set of inliers so far...            bestscore = ninliers;  % Record data for this model            bestinliers = inliers;            bestM = M;                        % Update estimate of N, the number of trials to ensure we pick,             % with probability p, a data set with no outliers.            fracinliers =  ninliers/npts;            pNoOutliers = 1 -  fracinliers^s;            pNoOutliers = max(eps, pNoOutliers);  % Avoid division by -Inf            pNoOutliers = min(1-eps, pNoOutliers);% Avoid division by 0.            N = log(1-p)/log(pNoOutliers);        end                trialcount = trialcount+1;        if feedback            fprintf('trial %d out of %d         \r',trialcount, ceil(N));        end        % Safeguard against being stuck in this loop forever        if trialcount > maxTrials            warning( ...            sprintf('ransac reached the maximum number of %d trials',...                    maxTrials));            break        end         end    fprintf('\n');        if ~isnan(bestM)   % We got a solution         M = bestM;        inliers = bestinliers;    else                   M = [];        inliers = [];        error('ransac was unable to find a useful solution');    end    

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲一区在线视频观看| 欧美精品国产精品| 韩国一区二区三区| 激情图区综合网| 激情国产一区二区| 国产传媒久久文化传媒| 国产成人免费在线视频| 日本亚洲免费观看| 狠狠色综合日日| 成人午夜看片网址| 成人免费视频一区二区| 91麻豆视频网站| 9191精品国产综合久久久久久| 欧美美女视频在线观看| 欧美大片在线观看一区二区| 中文字幕一区二区三区四区不卡| 精品国产一区二区在线观看| 国产精品996| 国产一区福利在线| 成人av午夜电影| 欧美精品欧美精品系列| 亚洲欧美电影院| 精品日韩99亚洲| 成人精品免费视频| 亚洲欧美电影一区二区| 欧美高清dvd| 国产一区二区三区| 亚洲乱码国产乱码精品精的特点 | 一本色道久久综合亚洲91| 一区二区三区91| 精品一区二区三区在线观看| 99在线精品一区二区三区| 色网综合在线观看| 久久久久国产精品人| 亚洲成人av福利| www.日韩大片| 国产天堂亚洲国产碰碰| 丝袜国产日韩另类美女| 色综合久久中文综合久久97| 国产亚洲女人久久久久毛片| 七七婷婷婷婷精品国产| 在线观看日韩毛片| 亚洲日本va午夜在线影院| 国内精品嫩模私拍在线| 日韩一级片在线观看| 亚洲国产日韩av| 国产酒店精品激情| 久久久电影一区二区三区| 国模无码大尺度一区二区三区| 久久综合九色综合97婷婷女人| 日韩精品一区二区三区视频| 国产精品成人免费在线| 有码一区二区三区| 99九九99九九九视频精品| 中文文精品字幕一区二区| 欧美三级电影一区| 日韩美女视频一区二区在线观看| 成人白浆超碰人人人人| 日本系列欧美系列| 亚洲永久精品大片| 国产精品久久久久影院| 久久久精品黄色| 日韩一区二区三区视频| 欧美日韩第一区日日骚| 91国产免费观看| 久久精品av麻豆的观看方式| 国产精品情趣视频| 在线观看国产91| 国产在线精品免费av| 亚洲免费在线视频| 日韩午夜激情视频| 精品一区二区在线播放| 亚洲素人一区二区| 91精品久久久久久久91蜜桃| 国产一区在线观看视频| 一区二区在线观看视频| 精品国产乱码久久久久久久久 | 欧美岛国在线观看| 大白屁股一区二区视频| 午夜电影久久久| 亚洲国产高清在线观看视频| 97aⅴ精品视频一二三区| 亚洲国产高清aⅴ视频| 久久久91精品国产一区二区三区| 波多野结衣亚洲| 精彩视频一区二区三区| 亚洲欧美激情在线| 日韩免费观看高清完整版 | 国产精品麻豆视频| 国产一区不卡在线| 亚洲成a人片在线观看中文| 国产精品免费aⅴ片在线观看| 中文字幕在线视频一区| 国产又黄又大久久| 欧美精品一区二区三区高清aⅴ| 一区二区三区高清在线| 亚洲韩国精品一区| 天天操天天综合网| 蜜臂av日日欢夜夜爽一区| 日韩在线一区二区| 久久99精品国产麻豆婷婷| 国内精品久久久久影院色| 粉嫩久久99精品久久久久久夜| 成人污污视频在线观看| 日韩一二三区不卡| 欧美一区二区三区喷汁尤物| 91在线国产观看| 欧美日韩一区二区三区视频 | 精品午夜一区二区三区在线观看| 国产精品乱子久久久久| 国产精品全国免费观看高清 | 色综合久久综合中文综合网| 日韩一区二区三| 久久99精品久久久久婷婷| 精品欧美一区二区久久| 激情综合色播激情啊| 国产无一区二区| 成人avav在线| 亚洲一区二区三区四区五区中文| 91香蕉视频污| 亚洲国产美女搞黄色| 久久精品国产网站| 99久久综合精品| 制服丝袜日韩国产| 国产亚洲欧美中文| 亚洲一区二区三区影院| 色综合天天综合网天天狠天天| 欧美日韩在线不卡| jvid福利写真一区二区三区| 欧美日韩综合在线| 国产无遮挡一区二区三区毛片日本| 尤物在线观看一区| 国产乱码一区二区三区| 欧美在线高清视频| 国产日产欧美一区二区视频| 一区二区三区在线观看动漫| 国内精品写真在线观看| 欧美性生交片4| 国产精品网曝门| 久久国内精品视频| 欧美日韩一级二级三级| 中文字幕在线一区免费| 激情偷乱视频一区二区三区| 欧美日韩一级黄| 亚洲人成在线观看一区二区| 国产伦精品一区二区三区视频青涩 | 欧美精品日日鲁夜夜添| 最新中文字幕一区二区三区 | 国产欧美日韩卡一| 日本 国产 欧美色综合| 欧美视频一区二区三区四区 | 亚洲九九爱视频| 成人黄动漫网站免费app| 精品99久久久久久| 欧美bbbbb| 制服丝袜成人动漫| 亚洲图片欧美色图| 91福利国产成人精品照片| 国产精品久久久久久久蜜臀 | 不卡的av中国片| 国产欧美日韩激情| 国产成人8x视频一区二区| 欧美精品一区二区三区四区| 久久成人综合网| 91精品在线一区二区| 青草国产精品久久久久久| 欧美精品色一区二区三区| 亚洲成人在线免费| 欧美日韩一区二区三区视频| 亚洲成人中文在线| 欧美日韩国产免费一区二区| 亚洲成人午夜影院| 欧美挠脚心视频网站| 日韩在线一区二区三区| 日韩一区二区三区精品视频 | 一区二区三区在线看| 色天使久久综合网天天| 一区二区三区免费在线观看| 日本韩国一区二区三区视频| 一区二区免费看| 欧美精品粉嫩高潮一区二区| 免费看欧美女人艹b| 欧美电影免费观看高清完整版在线观看| 日本视频中文字幕一区二区三区| 欧美一区二区三区影视| 精品无人码麻豆乱码1区2区| 欧美国产欧美综合| 91免费版在线看| 五月婷婷综合激情| 欧美成人bangbros| 成人免费视频国产在线观看| 中文字幕综合网| 欧美高清视频在线高清观看mv色露露十八| 亚洲福利国产精品| 欧美电影免费观看高清完整版在| 国产一区二区三区免费看| 中文字幕一区二区三区不卡在线| 91免费视频大全| 青青草国产成人av片免费| 国产亚洲欧美一级|