亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 跟類神經(jīng)網(wǎng)路有點像的東西
??
字號:
Python-to-libsvm interfaceTable of Contents=================- Introduction- Installation- Usage- ExamplesIntroduction============Python (http://www.python.org/) is a programming language suitable forrapid development. This python-to-libsvm interface is developed so users can easily experiment with libsvm using python. The interface is developed with SWIG, The original idea and the SWIG interface file was provided by Carl Staelin(staelin@hpl.hp.com) from HP Labs. The interface was integrated into thelibsvm package by Li-lun Wang (llwang@infor.org) from National TaiwanUniversity. Chih-Chung Chang (b4506055@csie.ntu.edu.tw) from NationalTaiwan University also contributed many useful suggestions.Installation============We first show the instructions for Unix andthen those for MS Windows.The build process for the various Unix systems is as follows:Before you build the module, you need to find out the python includedirectory, which is typically located at /usr/local/include/python2.5 or/usr/include/python. You can set the variable PYTHON_INCLUDEDIR inMakefile manually or use something like the following:	make PYTHON_INCLUDEDIR=/usr/include/python allAlthough the interface is generated by SWIG, it is not necessary tohave SWIG installed because the generated svmc_wrap.c is included inthis package (It was generated using SWIG 1.3.31). If you prefergenerating the interface with SWIG on your own, you can simply removethe generated files with	make morecleanbefore building the module. Note that SWIG version > 1.3.7 should be used.When the build process completes, a shared object called svmc.so will becreated.For win32 systems, the shared library svmc.pyd is ready in thedirectory windows/python. You need to copy it to this directory.  The.pyd file depends on different versions of python, so you may have tore-make it by following the instruction of building windows binariesin libsvm README.To install this module into the system's Python installation, youshould be a system administrator and type:	python setup.py installThis command will create a directory build/ containing the module andinstall it to the Python installation (i.e. the python librarydirectory).Usage=====To use the module, the files svm.py and the shared library (namely svmc.soor svmc.pyd) must be placed in the current directory, the python librarydirectory, or the directory where the environment variable PYTHONPATHpoints to. The user then imports everything in svm.py to use libsvm inpython:	from svm import *There are three classes in svm.py, namely svm_parameter, svm_problem, andsvm_model.svm_parameter is used to set the parameters of the trainingprocess. The attributes in svm_parameter include svm_type,kernel_type, degree, gamma, coef0, nu, cache_size, C, eps, p,shrinking, nr_weight, weight_label, and weight. Available svm typesinclude C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, and NU_SVR. Availablekernel types include LINEAR, POLY, RBF, and SIGMOID. The user cansetup the parameters with the constructor and keyword arguments:	param = svm_parameter(kernel_type = LINEAR, C = 10)The user can also modify the parameters later:	param.kernel_type = RBFsvm_problem is used to hold the training data for the problem. Theconstructor takes two arguments; the first of them is the list of labels,and the other is the list of samples. For example	prob = svm_problem([1,-1],[[1,0,1],[-1,0,-1]])or equivalently	prob = svm_problem([1,-1],[{1:1,3:1},{1:-1,3:-1}])Warning: due to supporting the precomputed kernels (described below),a sample [1,0,1] is internally represented as {0:1, 2:1}. Thus, youshould use only one format in your entire code (for bothtraining/testing). For example, using	prob = svm_problem([1,-1],[[1, 0, 1],{1:-1,3:-1}])will result in a different model from the above example.For precomputed kernels, the first element of each instance must bethe ID. For example,	samples = [[1, 0, 0, 0, 0], [2, 0, 1, 0, 1], [3, 0, 0, 1, 1], [4, 0, 1, 1, 2]]	problem = svm_problem(labels, samples);For more details of precomputed kernels, please check README of theparent directory.Once the parameter and problem are ready, we can construct the model:	m = svm_model(prob, param)To conduct n-fold cross validation; predicted labels in the validationprocess are returned.	target = cross_validation(prob, param, n)To predict a new sample with the model:	r = m.predict([1, 1, 1])To obtain decision values of predicting a sample:	d = m.predict_values([1, 1, 1])	To predict a new sample and obtain probability estimates;return value is a dict that maps labels to probabilities.	prd, prb = m.predict_probability([1, 1, 1])	sample of prd : 1.0	sample of prb : {1:0.6, -1:0.4}To obtain sigma of the probability density function for regression;see ../README for the definition of the function.	sigma = m.get_svr_probability()To obtain the probability density function for regression; see../README for the definition of the function.	pdf = m.get_svr_pdf()	probability = pdf(z)To save the model to a file:	m.save('test.model')and to load the model from a file:	m = svm_model('test.model')Examples========There are two examples in this package. The one is svm_test.py, and theother is test_cross_validation.py.svm_test.py tests various kernels on a three-class problem withC-SVM. It also demonstrates how to obtain decision values andprobability estimates.test_cross_validation.py demonstrates loading data from a file anddoes a ten-fold cross validation on the heart_scale dataset. It makesuse of cross_validation.py which calls the C++ cross validationsubroutine.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久99精品国产麻豆婷婷| 国产.欧美.日韩| 日韩毛片视频在线看| 久久嫩草精品久久久精品一| 欧美一区日韩一区| 91麻豆精品国产| 这里只有精品视频在线观看| 欧美日韩国产区一| 91精品国产一区二区人妖| 91精品国产乱| 精品少妇一区二区三区在线播放| 欧美一二区视频| 久久综合久久99| 欧美韩日一区二区三区| 国产欧美日韩一区二区三区在线观看 | 久久国产精品免费| 久久av资源网| 懂色av一区二区三区免费看| 成人av在线资源| 色屁屁一区二区| 欧美日本视频在线| 日韩色视频在线观看| 久久精品综合网| |精品福利一区二区三区| 亚洲天堂免费在线观看视频| 一区二区三区中文在线| 日本亚洲电影天堂| 国产在线国偷精品免费看| 国产精品综合一区二区三区| 成人的网站免费观看| 在线一区二区视频| 欧美va亚洲va在线观看蝴蝶网| 久久毛片高清国产| 亚洲美女少妇撒尿| 日本成人在线一区| 成人网页在线观看| 欧美日韩在线电影| 久久影院电视剧免费观看| 中文字幕一区二区三区蜜月| 亚洲一区二区三区四区在线免费观看 | 老司机精品视频一区二区三区| 国产精品一级在线| 色噜噜久久综合| 欧美mv日韩mv国产| 亚洲黄色录像片| 精品一区免费av| 91成人国产精品| 久久夜色精品国产噜噜av| 亚洲精品第一国产综合野| 久久国产精品免费| 91福利视频网站| 精品福利av导航| 伊人夜夜躁av伊人久久| 激情五月婷婷综合| 欧美私模裸体表演在线观看| xvideos.蜜桃一区二区| 亚洲国产一区二区在线播放| 国产精品2024| 欧美高清一级片在线| 国产精品成人一区二区三区夜夜夜 | 天天影视涩香欲综合网| 国产69精品久久777的优势| 欧美另类高清zo欧美| 中文字幕av不卡| 美女性感视频久久| 欧美三级视频在线| 国产精品成人免费精品自在线观看| 青娱乐精品在线视频| 91理论电影在线观看| 欧美精品一区二区蜜臀亚洲| 亚洲国产一区在线观看| av中文字幕一区| 久久影院视频免费| 日韩av在线播放中文字幕| 色综合久久中文综合久久牛| 久久久99久久| 午夜a成v人精品| 91在线看国产| 国产精品免费视频网站| 狠狠狠色丁香婷婷综合激情| 欧美男男青年gay1069videost | 午夜天堂影视香蕉久久| 成人激情小说网站| 精品99999| 免费在线欧美视频| 欧美日韩电影在线| 亚洲免费毛片网站| 成人黄页在线观看| 国产肉丝袜一区二区| 精品一区二区三区在线观看国产| 欧美日韩免费视频| 一区二区在线免费观看| 不卡免费追剧大全电视剧网站| 久久精品日韩一区二区三区| 美女视频一区在线观看| 91超碰这里只有精品国产| 亚洲自拍偷拍图区| 91猫先生在线| 中文字幕一区二区三| 成人h精品动漫一区二区三区| 久久久亚洲欧洲日产国码αv| 蜜臀久久99精品久久久久宅男| 欧美精品免费视频| 午夜视频在线观看一区二区| 欧美日韩免费一区二区三区| 亚洲成国产人片在线观看| 欧美色男人天堂| 天天操天天综合网| 欧美一级片在线观看| 免费在线成人网| 日韩亚洲电影在线| 九色|91porny| 久久亚洲欧美国产精品乐播| 国产成人综合网站| 日韩和欧美一区二区三区| 欧美日韩中字一区| 午夜久久久影院| 91精品国产乱| 国产一区二区三区久久久| 国产亚洲综合在线| av激情综合网| 亚洲一区二区在线视频| 欧美日韩国产另类不卡| 爽好久久久欧美精品| 精品国产麻豆免费人成网站| 国产一区二区导航在线播放| 国产精品网站在线播放| 色88888久久久久久影院野外| 亚洲一区二区三区四区中文字幕 | 午夜久久久久久久久| 7878成人国产在线观看| 国内久久婷婷综合| 亚洲欧洲精品一区二区三区 | 精品第一国产综合精品aⅴ| 国产一区91精品张津瑜| 亚洲视频在线一区| 在线播放中文一区| 狠狠色综合播放一区二区| 中文字幕av一区二区三区免费看| 一本大道久久a久久精品综合| 亚洲成人自拍一区| 久久五月婷婷丁香社区| 91久久一区二区| 免费成人在线网站| 国产精品久久夜| 欧美美女激情18p| 国产酒店精品激情| 一区二区在线电影| 精品国产91亚洲一区二区三区婷婷| 成人蜜臀av电影| 日精品一区二区| 亚洲国产电影在线观看| 欧美日韩高清在线播放| 成人在线视频一区| 午夜精品久久久久久久久| 久久精品亚洲精品国产欧美kt∨| 色欲综合视频天天天| 精品一区二区三区久久| 亚洲欧美激情插 | 国产精品香蕉一区二区三区| 亚洲欧美日韩中文播放 | 亚洲bt欧美bt精品| 中文字幕电影一区| 日韩一级免费一区| 色欧美88888久久久久久影院| 老司机午夜精品99久久| 亚洲精选免费视频| 久久九九影视网| 日韩一区二区免费视频| 色综合久久中文字幕综合网| 狠狠色综合播放一区二区| 亚洲成人第一页| 国产精品网站导航| 久久嫩草精品久久久精品| 欧美精品免费视频| 色激情天天射综合网| 粉嫩av一区二区三区在线播放| 日本不卡在线视频| 亚洲精品国产视频| 国产精品久久久久影院亚瑟| 欧美一区二区三区免费| 91成人看片片| 91蜜桃网址入口| 国产白丝网站精品污在线入口 | 欧美久久一区二区| 色诱视频网站一区| 成人深夜在线观看| 国产麻豆精品theporn| 蜜桃视频在线一区| 丝袜诱惑亚洲看片| 亚洲综合清纯丝袜自拍| 国产精品成人一区二区艾草| 国产人成一区二区三区影院| 日韩欧美电影一区| 在线综合视频播放| 欧美私模裸体表演在线观看| 在线视频一区二区三区| 日本韩国精品在线| 91老师国产黑色丝袜在线| 成人av片在线观看|