?? rcs_sphere.m
字號:
% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(2.7), and produce plots similar to Fig.2.7
% Spherical Bessel functions are computed using series approximation and recursion.
clear all
eps = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
index = index + 1;
sphere_rcs = 0. + 0.*i;
f1 = 0. + 1.*i;
f2 = 1. + 0.*i;
m = 1.;
n = 0.;
q = -1.;
% initially set del to huge value
del =100000+100000*i;
while(abs(del) > eps)
q = -q;
n = n + 1;
m = m + 2;
del = (2.*n-1) * f2 / kr-f1;
f1 = f2;
f2 = del;
del = q * m /(f2 * (kr * f1 - n * f2));
sphere_rcs = sphere_rcs + del;
end
rcs(index) = abs(sphere_rcs);
sphere_rcsdb(index) = 10. * log10(rcs(index));
end
figure(1);
n=0.05:.05:15;
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel ('Normalized sphere RCS');
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');
grid;
figure (3);
semilogx (n,sphere_rcsdb,'k');
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -