?? imped.m
字號(hào):
% imped.m - mutual impedance between two parallel standing-wave dipoles
%
% Usage: [Z21,Z21m] = imped(L2,L1,d,b) (mutual impedance of dipole 2 due to dipole 1)
% [Z21,Z21m] = imped(L2,L1,d) (equivalent to b=0, side-by-side arrangement)
% [Z,Zm] = imped(L,a) (self-impedance of length-L dipole of radius a)
%
% L2,L1 = lengths of dipoles (in wavelengths)
% d = side-by-side distance between dipoles (in wavelengths)
% b = collinear offset between dipole centers (default, b=0)
% L = length of dipole (in wavelengths)
% a = radius of dipole (in wavelengths)
%
% Z21 = mutual impedance of dipole 2 due to dipole 1 referred to the input currents
% Z21m = mutual impedance of dipole 2 due to dipole 1 referred to maximum currents
%
% notes: the relationship between Z21 and Z21m is Z21m = Z21 * sin(pi*L1) * sin(pi*L2)
% Z21 is infinite if L1,L2 are integral multiples of lambda
%
% b=0, side-by-side arrangement
% d=0, collinear arrangement, if s = distance between dipoles, then b=s+L1/2+L2/2
%
% uses Gauss-Legendre QUADR to perform the numerical integrations; for improved
% accuracy around z=0, the interval [-L2/2,L2/2] is split into the subintervals
% [-L2/2,-delta], [-delta,delta], [delta,L2/2], where delta = L2/500
%
% self-impedance of a single dipole of length L and radius a (in wavelengths) is
% Z = imped(L,a); self-impedance calculations are accurate for a > 0.0005
% for a half-wave dipole with a=0, we have Z = imped(0.5,0) = 73.079 + 42.515j
% 1st resonant length with a=0: L = 0.48574823, Z = 67.184
% 2nd resonant length with a=0: L = 1.48338445, Z = 100.314
% S. J. Orfanidis - 1999 - www.ece.rutgers.edu/~orfanidi/ewa
function [Z21,Z21m] = imped(L2,L1,d,b)
if nargin==0, help imped; return; end
if nargin==3, b=0; end
if nargin==2, b=0; d=L1; L1=L2; end
eta = etac(1); % eta = 376.7303 ohm
delta = L2/500; % refined integration near z=0
N = 16; % number of quadrature weights
[w1,z1] = quadr(-L2/2, -delta, N); % integration interval [-L2/2, -delta]
[w2,z2] = quadr(-delta, delta, N); % integration interval [-delta, delta]
z3 = -flipud(z1); % integration interval [delta, L2/2]
F1 = F(z1, L2, L1, d, b); % evaluate integrand at Gauss-Legendre points
F2 = F(z2, L2, L1, d, b);
F3 = F(z3, L2, L1, d, b);
% sum integrals over the three subintervals
Int = w1'*F1 + w2'*F2 + w1'*F3; % note w3 = w1 by symmetry
Z21m = j * eta * Int / (4*pi);
Z21 = Z21m / (sin(pi*L1) * sin(pi*L2));
% function to be integrated ------------------------------------------------------
function y = F(z, L2, L1, d, b)
k = 2*pi;
R1 = sqrt(d^2 + (z + b - L1/2).^2);
R2 = sqrt(d^2 + (z + b + L1/2).^2);
R0 = sqrt(d^2 + (z + b).^2);
G1 = exp(-j*k*R1)./R1;
G2 = exp(-j*k*R2)./R2;
G0 = exp(-j*k*R0)./R0;
y = (G1 + G2 - 2*cos(k*L1/2) * G0) .* sin(k*(L2/2-abs(z)));
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -