亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? pcaklm.m

?? 模式識別工具箱。非常豐富的底層函數和常見的統計識別工具
?? M
字號:
%PCAKLM Principal Component Analysis/Karhunen-Loeve Mapping%       (PCA or MCA of overall/mean covariance matrix)% % 	[W,FRAC] = PCAKLM(TYPE,A,N)% 	[W,N]    = PCAKLM(TYPE,A,FRAC)%% INPUT%  A              Dataset% TYPE				Type of mapping: 'pca' or 'klm'. Default: 'pca'.%	N	or FRAC		Number of dimensions (>= 1) or fraction of variance (< 1) %							to retain; if > 0, perform PCA; otherwise MCA. Default: N = inf.%% OUTPUT% W 					Affine Karhunen-Loeve mapping% FRAC or N		Fraction of variance or number of dimensions retained.%% DESCRIPTION% Performs a principal component analysis (PCA) or minor component analysis% (MCA) on the overall or mean class covariance matrix (weighted by the% class prior probabilities). It finds a rotation of the dataset A to an% N-dimensional linear subspace such that at least (for PCA) or at most (for% MCA) a fraction FRAC of the total variance is preserved.%% PCA is applied when N (or FRAC) >= 0; MCA when N (or FRAC) < 0. If N is % given (abs(N) >= 1), FRAC is optimised. If FRAC is given (abs(FRAC) < 1), % N is optimised. %% Objects in a new dataset B can be mapped by B*W, W*B or by A*KLM([],N)*B.% Default (N = inf): the features are decorrelated and ordered, but no % feature reduction is performed.%% ALTERNATIVE%% 	V = PCAKLM(A,TYPE,0)% % Returns the cumulative fraction of the explained variance. V(N) is the % cumulative fraction of the explained variance by using N eigenvectors.%% This function should not be called directly, only trough PCA or KLM.% Use FISHERM for optimizing the linear class separability (LDA).% % SEE ALSO% MAPPINGS, DATASETS, PALDC, KLLDC, PCA, KLM, FISHERM% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: pcaklm.m,v 1.9 2007/09/09 21:20:06 duin Exp $function [w,truefrac] = pcaklm (type,a,frac)	prtrace(mfilename);	truefrac = [];	% Default: preserve all dimensions (identity mapping).	if (nargin < 3) | (isempty(frac))		frac = inf; 		prwarning (3,'no dimensionality given, only decorrelating and ordering dimensions');	end	% Default: perform PCA.	if (nargin < 1) | (isempty(type))		type = 'pca';		prwarning (3,'no type given, assuming PCA');	end	if (strcmp(type,'pca'))		mapname = 'PCA';	elseif (strcmp(type,'klm'))		mapname = 'Karhunen-Loeve Mapping';	else		error('Unknown type specified');	end	%DXD Make the name a bit more informative:	if isfinite(frac)		if (frac<1)			mapname = [mapname sprintf(' ret. %4.1f%% var',100*frac)];		else			mapname = [mapname sprintf(' to %dD',frac)];		end	end	% Empty mapping: return straightaway.	if (nargin < 2) | (isempty(a))		w = mapping(type,frac);		w = setname(w,mapname);		return	end	%nodatafile(a);	if ~isdataset(a) & ~isdatafile(a) 		a = dataset(a,1);   % make sure we have a dataset	end		islabtype(a,'crisp','soft');	isvaldfile(a,1);   % at least 1 object per class	[m,k,c] = getsize(a);	p = getprior(a);	a = setprior(a,p);  % make class frequencies our prior	% If FRAC < 0, perform minor component analysis (MCA) instead of 	% principal component analysis.	mca = (frac < 0); frac = abs(frac);	% Shift mean of data to origin.	b = a*scalem(a); 	% If there are less samples M than features K, first perform a lossless	% projection to the (M-1) dimensional space spanned by the samples.	if (m <= k)		testdatasize(b,'objects');		u = reducm(b); b = b*u;		korg = k; [m,k] = size(b);		frac = min(frac,k);	else		testdatasize(b,'features');		u = [];	end	% Calculate overall or average class prior-weighted covariance matrix and	% find eigenvectors F. 	if (strcmp(type,'pca'))		if (c==0)  % we have unlabeled data!			G = cov(+b); % use all		else			bb = [];			classsiz = classsizes(b);			for j = 1:c				bb = [bb; seldat(b,j)*filtm([],'double')*p(j)/classsiz(j)];			end			[U,G] = meancov(remclass(setnlab(bb,1)));		end	else		%DXD For high dimensional dataset with many classes, we cannot		%store all individual cov. matrices in memory (like in the next		%line), but we have to compute them one by one:		%[U,GG] = meancov(b,1);		G = zeros(k,k);		for i = 1:c			%G = G + p(i)*GG(:,:,i);			[U,GG] = meancov(seldat(b,i),1);			G = G + p(i)*GG;		end	end	[F,V] = eig(G); 	% v = V(I) contains the sorted eigenvalues:	% descending for PCA, ascending for MCA.	if (mca)		[v,I] = sort(diag(V));	else		[v,I] = sort(-diag(V));	end		if (frac == inf)				% Return all dimensions, decorrelated and ordered.		n = k; truefrac = k;									elseif (frac == 0)			% Just return cumulative retained variance.		w = cumsum(v)/sum(v);    return	elseif (frac >= 1)			% Return FRAC dimensions.		n = abs(frac); if (n > k), error('illegal dimensionality requested'); end		I = I(1:n); sv = sum(v); 		if (sv ~= 0), truefrac = cumsum(v(1:n))/sv; else, truefrac = 0; end;	elseif (frac > 0)				% Return the N dimensions that retain at least (PCA)                          % or at most (MCA) FRAC variance.		J = find(cumsum(v)/sum(v) > frac);		if (mca), n = J(1)-1; else, n = J(1); end;		truefrac = n; I = I(1:n);	end	% If needed, apply pre-calculated projection to (M-1) dimensional subspace.	if (~isempty(u))		rot = u.data.rot*F(:,I); 		off = u.data.offset*F(:,I);	else		rot = F(:,I); 		off = -mean(a*F(:,I));	end	% Construct affine mapping.	w = affine(rot,off,a);	w = setname(w,mapname);		return

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
五月天婷婷综合| 欧美日韩在线播| 久久一区二区三区国产精品| 偷拍与自拍一区| 欧美视频你懂的| 亚洲综合偷拍欧美一区色| 色婷婷综合中文久久一本| 国产精品丝袜在线| 日韩精品乱码av一区二区| 欧美撒尿777hd撒尿| 一区二区高清免费观看影视大全 | 99国产精品99久久久久久| 国产欧美日韩综合| 国内外成人在线视频| 久久亚洲一区二区三区四区| 久久成人免费网站| 26uuu色噜噜精品一区| 狠狠色丁香久久婷婷综| 久久久激情视频| a4yy欧美一区二区三区| 国产精品理伦片| 色综合久久久久网| 午夜精彩视频在线观看不卡| 欧美精品日日鲁夜夜添| 久久99国产乱子伦精品免费| 久久久久久麻豆| 成人福利视频网站| 一区二区在线免费观看| 欧美日韩国产bt| 亚洲国产精品久久人人爱| 4438x亚洲最大成人网| 久久99日本精品| 久久午夜色播影院免费高清| 成人avav影音| 亚洲一区二区3| 日韩精品一区二区三区四区| 国产麻豆欧美日韩一区| 国产欧美一区二区精品性色| 色综合久久中文字幕| 日韩av二区在线播放| 久久久久久久久久久久久久久99| 国产精品小仙女| 一区二区成人在线观看| 7799精品视频| 成人手机电影网| 五月婷婷激情综合网| 久久久久久久久久看片| 欧美亚洲动漫精品| 国产黑丝在线一区二区三区| 一区二区三区中文在线观看| 精品国产一区二区在线观看| 国产成人午夜视频| 免费在线一区观看| 中文幕一区二区三区久久蜜桃| 欧美日韩中文字幕精品| 国产精品综合久久| 亚洲大片精品永久免费| 欧美极品少妇xxxxⅹ高跟鞋| 8x福利精品第一导航| 国产丶欧美丶日本不卡视频| 五月天精品一区二区三区| 亚洲欧洲成人自拍| 精品福利二区三区| 欧美日韩国产精选| 色综合天天在线| 国产成人午夜电影网| 日韩av一区二| 亚洲成人av资源| 亚洲天堂久久久久久久| 国产亚洲欧美中文| 精品国产亚洲在线| av在线不卡观看免费观看| 国产在线精品免费av| 日韩国产欧美三级| 一区二区三区免费看视频| 国产日韩欧美亚洲| 久久嫩草精品久久久久| 3d成人h动漫网站入口| 色88888久久久久久影院野外| 蜜桃一区二区三区在线| 亚洲地区一二三色| 亚洲精品日韩综合观看成人91| 欧美国产精品中文字幕| 久久久久久久久99精品| 日韩欧美黄色影院| 在线电影院国产精品| 在线日韩一区二区| 色偷偷久久一区二区三区| 99久久婷婷国产精品综合| 国产一区二区在线视频| 麻豆视频一区二区| 日本美女视频一区二区| 免播放器亚洲一区| 日韩精品成人一区二区三区| 亚洲日本va在线观看| 亚洲欧美乱综合| 国产欧美一区二区三区在线看蜜臀| 欧美日韩精品一区二区三区 | 亚洲欧美一区二区三区国产精品| 成人激情免费网站| 亚洲国产精品久久久男人的天堂| 精品福利在线导航| 久久精品一区二区三区不卡| 日韩午夜激情免费电影| 91免费看`日韩一区二区| 免费成人性网站| 亚洲成人免费视频| 午夜在线成人av| 久久精品在线免费观看| 欧美三级视频在线| 成人福利视频网站| 日本人妖一区二区| 91免费视频观看| 亚洲综合丁香婷婷六月香| 亚洲国产成人精品视频| 麻豆精品一二三| 亚洲国产成人av网| 国产精品久久久久aaaa| 欧美激情一区二区三区在线| 亚洲天天做日日做天天谢日日欢 | 国产精品视频一二三| 久久久久久电影| 亚洲精品午夜久久久| 美女视频黄久久| 92精品国产成人观看免费| 色婷婷综合视频在线观看| 5858s免费视频成人| 中文字幕乱码一区二区免费| 一级特黄大欧美久久久| 黄色资源网久久资源365| 欧美色手机在线观看| 久久久久久久久久久久久久久99| 中文字幕一区二区三区视频| 国产成人av一区二区三区在线观看| 欧亚洲嫩模精品一区三区| 国产精品每日更新| 99久久亚洲一区二区三区青草| 精品国产91亚洲一区二区三区婷婷| 色综合天天综合网天天狠天天| 91美女在线观看| 国产午夜精品久久久久久免费视 | 日韩欧美一二区| 中文字幕一区在线| 男女男精品视频网| 欧美在线观看一二区| 国产精品污www在线观看| 日本欧美一区二区三区乱码| 一本在线高清不卡dvd| 日本一区二区三区在线观看| 日本亚洲天堂网| 欧美日韩一区二区三区不卡| 欧美激情一区二区三区四区| 极品美女销魂一区二区三区| 91亚洲精品一区二区乱码| 久久久久久久综合色一本| 免费av网站大全久久| 在线成人午夜影院| 午夜精品在线看| 欧美午夜电影网| 亚洲综合999| 欧美亚洲自拍偷拍| 精品日韩在线一区| 欧美午夜理伦三级在线观看| 亚洲高清视频的网址| 欧美电影一区二区三区| 久久电影网站中文字幕| 亚洲一区二区精品3399| 欧美精品黑人性xxxx| 精品在线观看免费| 1024精品合集| 中文字幕一区av| 中文字幕av不卡| 免费在线观看一区二区三区| 国产福利91精品一区二区三区| 一个色在线综合| 中文字幕免费观看一区| 一区二区三区加勒比av| 青草国产精品久久久久久| 成人免费毛片片v| 欧美一区二区网站| 亚洲色图欧洲色图| 国产精品99精品久久免费| 欧美在线观看视频一区二区三区| 欧美精品一区二区三区很污很色的 | 轻轻草成人在线| 26uuuu精品一区二区| 91久久一区二区| 欧美日韩在线不卡| 日韩欧美一区二区免费| 国产色爱av资源综合区| 亚洲国产精品麻豆| 日韩一区和二区| 国产精品一区二区免费不卡| 国产欧美一区二区精品性色 | 精品在线亚洲视频| 久久精品人人爽人人爽| 99精品桃花视频在线观看| 一区二区三区蜜桃| 欧美成人精品3d动漫h| 成人性生交大合|