?? klm.m
字號(hào):
%KLM Karhunen-Loeve Mapping (PCA or MCA of mean covariance matrix)% % [W,FRAC] = KLM(A,N)% [W,N] = KLM(A,FRAC)%% INPUT% A Dataset% N or FRAC Number of dimensions (>= 1) or fraction of variance (< 1) % to retain; if > 0, perform PCA; otherwise MCA.% Default: N = inf.%% OUTPUT% W Affine Karhunen-Loeve mapping% FRAC or N Fraction of variance or number of dimensions retained.%% DESCRIPTION% The Karhunen-Loeve Mapping performs a principal component analysis% (PCA) or minor component analysis (MCA) on the mean class covariance% matrix (weighted by the class prior probabilities). It finds a% rotation of the dataset A to an N-dimensional linear subspace such% that at least (for PCA) or at most (for MCA) a fraction FRAC of the% total variance is preserved.%% PCA is applied when N (or FRAC) >= 0; MCA when N (or FRAC) < 0. If N% is given (abs(N) >= 1), FRAC is optimised. If FRAC is given% (abs(FRAC) < 1), N is optimised. %% Objects in a new dataset B can be mapped by B*W, W*B or by% A*KLM([],N)*B. Default (N = inf): the features are decorrelated and% ordered, but no feature reduction is performed.%% ALTERNATIVE%% V = KLM(A,0)% % Returns the cummulative fraction of the explained variance. V(N) is% the cumulative fraction of the explained variance by using N% eigenvectors.%% Use PCA for a principal component analysis on the total data% covariance. Use FISHERM for optimizing the linear class% separability (LDA).%% This function is basically a wrapper around pcaklm.m.% % SEE ALSO% MAPPINGS, DATASETS, PCAKLM, PCLDC, KLLDC, PCA, FISHERM% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: klm.m,v 1.2 2006/03/08 22:06:58 duin Exp $function [w,truefrac] = klm (varargin) prtrace(mfilename); [w,truefrac] = pcaklm(mfilename,varargin{:});return
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -