亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ch4_1i.m

?? 清華大學《matlab 控制系統應用與實例》第一部分M文件的源碼
?? M
字號:
%       This demo describes the group of RECURSIVE (ON-LINE)
%       algorithms.  The recursive M-files include: RPEM, RPLR,
%       RARMAX, RARX, ROE, and RBJ.   These algorithms implement
%       all the recursive algorithms described in Chapter 11 of
%       Ljung(1987).
%
%       RPEM is the general Recursive Prediction Error Algorithm
%       for arbitrary multiple-input-single-output models
%       (the same models as PEM works for).
%
%       PRLR is the general Recursive PseudoLinear Regression method
%       for the same family of models.
%
%       RARX is a more efficient version of RPEM (and RPLR) for the
%       ARX-case.
%
%       ROE, RARMAX and RBJ are more efficient versions of RPEM for
%       the OE, ARMAX, and BJ cases (compare these functions to the
%       off-line methods).

%       ADAPTATION MECHANISMS:  Each of the algorithms implement the
%       four most common adaptation principles:
%
%       KALMAN FILTER approach: The true parameters are supposed to
%       vary like a random walk with incremental covariance matrix
%       R1.
%
%       FORGETTING FACTOR approach: Old measurements are discounted
%       exponentially. The base of the decay is the forgetting factor
%       lambda.
%
%       GRADIENT method: The update step is taken as a gradient step
%       of length gamma (th_new=th_old + gamma*psi*epsilon).
%
%       NORMALIZED GRADIENT method: As above, but gamma is replaced by
%       gamma/(psi'*psi). The Gradient methods are also
%       known as LMS (least mean squares) for the ARX case.


%  Let's pick a model and generate some input-output data:
u = sign(randn(50,1)); e = 0.2*randn(50,1);
th0 = idpoly([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);
y = sim(th0,[u e]); z = iddata(y,u);

figure, plot(z)  % Press a key to see data.

%       First we build an Output-Error model of the data we just
%       plotted.  Use a second order model with one delay, and apply
%       the forgetting factor algorithm with lambda = 0.98:
thm1 = roe(z,[2 2 1],'ff',0.98);  % It may take a while ....

%       The four parameters can now be plotted as functions of time.
figure, plot(thm1), title('Estimated parameters')% Press a key to see plot.

%       The true values are as follows: (Press a key for plot)
 hold on, plot(ones(50,1)*[1 0.5 -1.5 0.7]), 
title('Estimated parameters and true values')

hold off

%       Now let's try a second order ARMAX model, using the RPLR
%       approach (i.e ELS) with Kalman filter adaptation, assuming
%       a parameter variance of 0.001:
thm2 = rplr(z,[2 2 2 0 0 1],'kf',0.001*eye(6));


figure,plot(thm2), title('Estimated parameters')
axis([0 50 -2 2])

% The true values are as follows: (Press any key for plot)
 hold on, plot(ones(50,1)*[-1.5 0.7 1 0.5 -1 0.2]),
title('Estimated parameters and true values')
hold off

%       So far we have assumed that all data are available at once.
%       We are thus studying the variability of the system rather
%       than doing real on-line calculations. The algorithms are
%       also prepared for such applications, but they must then
%       store more update information. The conceptual update then
%       becomes:
%  1. Wait for measurements y and u.
%  2. Update: [th,yh,p,phi] = rarx([y u],[na nb nk],'ff',0.98,th',p,phi)
%  3. Use th for whatever on-line application required.
%  4. Go to 1.
%       Thus the previous estimate th is fed back into the algorithm
%       along with the previous value of the "P-matrix" and the data
%       vector phi.
%       We now do an example of this where we plot just the current
%       value of th. The code is as follows:

       figure,
     [th,yh,p,phi] = rarx(z(1,:),[2 2 1],'ff',0.98);
     for k = 2:50
          [th,yh,p,phi] = rarx(z(k,:),[2 2 1],'ff',0.98,th',p,phi);
          plot(k,th(1),'*',k,th(2),'+',k,th(3),'o',k,th(4),'*'),hold on
     end
hold off

%   SEGMENTATION OF DATA
%
%   The command SEGMENT segments data that are generated from
%   systems that may undergo abrupt changes. Typical applications
%   for data segmentation are segmentation of speech signals (each
%   segment corresponds to a phonem), failure detection (the segments
%   correspond to operation with and without failures) and estimating
%   different working modes of a system.  We shall study a system
%   whose time delay changes from two to one.
load iddemo6m.mat
z = iddata(z(:,1),z(:,2));
%       First, take a look at the data:
figure, idplot(z)  % Press any key for plot.

%       The change takes place at sample number 20, but this is not
%       so easy to see.
%
%       We would like to estimate the system as an ARX-structure model
%       with one a-parameter, two b-parameters and one delay:
%       y(t) + a*y(t-1) = b1*u(t-1) + b2*u(t-2)
%       The information to be given is the data, the model orders
%       and a guess of the variance (r2) of the noise that affects
%       the system. If this is entirely unknown, it can be estimated
%       automatically. Here we set it to 0.1:
nn = [1 2 1];
[seg,v,tvmod] = segment(z,nn,0.1);



%       Let's take a look at the segmented model. Blue(yellow) line
%       is for the a-parameter. Green(magneta) is for b1 and Red(cyan)
%       for the parameter b2.
figure,plot(seg)    % Press any key for plot.
hold on

%       We see clearly the jump around sample number 19. b1 goes from
%       0 to 1 and b2 vice versa, which shows the change of the
%       delay. The true values can also be shown:
 plot(pars)   % Press any key for plot.
hold off


%       The method for segmentation is based on AFMM (adaptive
%       forgetting through multiple models), Andersson, Int. J.
%       Control Nov 1985.  A multi-model approach is used in a first
%       step to track the time varying system. The resulting tracking
%       model could be of interest in its own right, and are given by
%       the third output argument of SEGMENT (tvmod in our case). They
%       look as follows:
figure, plot(tvmod)   % Press any key for plot.

%       The SEGMENT M-file is thus an alternative to the recursive
%       algorithms RPEM, RARX etc for tracking time varying systems.
%       It is particularly suited for systems that may change rapidly.
%       From the tracking model, SEGMENT estimates the time points when
%       jumps have occurred, and constructs the segmented model by a
%       smoothing procedure over the tracking model.
%       The two most important "knobs" for the algorithm are r2, as
%       mentioned before, and the guessed probability of jumps, q, the
%       fourth input argument to SEGMENT.  The smaller r2 and the larger
%       q, the more willing SEGMENT will be to indicate segmentation
%       points. In an off line situation, the user will have to try a
%       couple of choices (r2 is usually more sensitive than q). The
%       second output argument to SEGMENT, v, is the loss function for
%       the segmented model (i.e. the estimated prediction error variance
%       for the segmented model). A goal will be to minimize this value.


%       OBJECT DETECTION IN LASER RANGE DATA
%
%       The reflected signal from a laser (or radar) beam contains
%       information about the distance to the reflecting object. The
%       signals can be quite noisy.  The presence of objects affects
%       both the distance information and the correlation between
%       neighbouring points. (A smooth object increases the
%       correlation between nearby points.)
%
%       In the following we study some quite noisy laser range data.
%       They are obtained by one horizontal sweep, like one line on
%       a TV-screen. The value is the distance to the reflecting object.
%       We happen to know that an object of interest hides between
%       sample numbers 17 and 48.
figure, plot(hline)  % Press any key for plot.

%       The eye is not good at detecting the object. We shall use
%       "segment".  First we detrend and normalize the data to a
%       variance about one. (This is not necessary, but it means that
%       the default choices in the algorithm are better tuned.)
hline = dtrend(hline)/200;

%       We shall now build a model of the kind:
%
%          y(t) + a y(t-1) = b
%
%       The coefficient 'a' will pick up correlation information.  The
%       value 'b' takes up the possible changes in level. We thus
%       introduce a fake input of all ones:
[m,n]=size(hline);
zline = [hline ones(m,n)];
s = segment(zline,[1 1 1],0.2);

figure
subplot(211),plot(hline),title('LASER RANGE DATA')
subplot(212),plot(s)
title('SEGMENTED MODELS, blue/solid: correlation, green/dashed: distance')

%       The segmentation has thus been quite successful.
%       SEGMENT is capable of handling multi-input systems, and of using
%       ARMAX models for the added noise.  We can try this on the test
%       data iddata1.mat (which contains no jumps):
load iddata1.mat
s = segment(z1(1:100),[2 2 2 1],1);
figure, subplot(111),plot(s),hold on% Press any key for plot.

%       Compare this with the true values:
plot([ ones(100,1)*[-1.5 0.7],ones(100,1)*[1 0.5],ones(100,1)*[-1 0.2]])
hold off

%       SEGMENT thus correctly finds that no jumps have occurred, and
%       also gives good estimates of the parameters.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91丨九色丨黑人外教| 久久老女人爱爱| 久久精品日产第一区二区三区高清版| 国产精品美女久久久久高潮| 奇米777欧美一区二区| 99久久综合精品| 久久无码av三级| 蜜桃精品在线观看| 欧美色欧美亚洲另类二区| 国产精品婷婷午夜在线观看| 极品少妇xxxx精品少妇| 欧美精品 国产精品| 亚洲免费av高清| 99久久综合国产精品| 国产性做久久久久久| 九九视频精品免费| 日韩一区二区三区精品视频| 香蕉久久夜色精品国产使用方法| 91浏览器在线视频| 亚洲免费观看高清完整版在线 | 久久久国产午夜精品 | 成人午夜私人影院| 久久这里只精品最新地址| 日本一区中文字幕| 欧美日本免费一区二区三区| 一区二区三区影院| 色综合天天性综合| 亚洲精品菠萝久久久久久久| 色综合色狠狠综合色| 夜夜操天天操亚洲| 欧美色网站导航| 热久久久久久久| 欧美变态tickle挠乳网站| 久久99国内精品| 精品国产第一区二区三区观看体验 | 欧美午夜精品免费| 亚洲一区二区在线免费观看视频| 91国产免费看| 日韩高清欧美激情| 日韩免费电影网站| 国产成人亚洲综合a∨婷婷| 日本一区二区三区久久久久久久久不| 国产91精品一区二区| 日韩毛片在线免费观看| 在线亚洲人成电影网站色www| 亚洲免费看黄网站| 欧美一级日韩免费不卡| 国产一区二区免费看| 国产精品你懂的| 欧美性生活久久| 老司机免费视频一区二区三区| 精品国产成人在线影院| 成人毛片老司机大片| 亚洲国产日韩在线一区模特 | 色伊人久久综合中文字幕| 亚洲国产一区二区在线播放| 日韩精品一区二区三区中文不卡| 国产精品1区二区.| 一区二区三区欧美亚洲| 欧美一级艳片视频免费观看| 国产**成人网毛片九色| 亚洲国产色一区| 久久九九久精品国产免费直播| 色综合久久综合网欧美综合网| 秋霞国产午夜精品免费视频| 国产三级一区二区| 精品视频一区二区不卡| 国产精品自在欧美一区| 亚洲一区二区三区四区在线 | 高清国产一区二区| 亚洲国产综合在线| 国产精品亲子乱子伦xxxx裸| 欧美精品久久久久久久久老牛影院 | 国产精品区一区二区三| 欧美精品高清视频| 99久久er热在这里只有精品15 | 五月婷婷久久丁香| 久久精品视频免费观看| 欧美绝品在线观看成人午夜影视| 国产精品99久久久久久似苏梦涵| 亚洲福利视频一区| 综合分类小说区另类春色亚洲小说欧美| 欧美一级精品大片| 欧美色倩网站大全免费| 93久久精品日日躁夜夜躁欧美| 国内成+人亚洲+欧美+综合在线 | 成人一区在线看| 日韩 欧美一区二区三区| 亚洲精品欧美二区三区中文字幕| 精品99999| 日韩小视频在线观看专区| 91视频免费观看| 成人免费看视频| 国产乱人伦偷精品视频不卡| 蜜臂av日日欢夜夜爽一区| 亚洲成人精品一区二区| 亚洲美女区一区| 国产精品久久久久久一区二区三区 | 一级精品视频在线观看宜春院 | 国产三区在线成人av| 日韩欧美高清在线| 欧美一级精品在线| 91精品国产色综合久久ai换脸| 91福利精品视频| 色综合久久久久综合体桃花网| va亚洲va日韩不卡在线观看| 成人黄色av电影| 成人黄色免费短视频| av在线不卡免费看| 91美女片黄在线观看| 不卡一区二区三区四区| 97精品国产97久久久久久久久久久久| 激情偷乱视频一区二区三区| 久久99热狠狠色一区二区| 青青草精品视频| 九九视频精品免费| 国产激情一区二区三区四区| 国产91在线看| 99re在线精品| 欧美日韩综合色| 91麻豆精品国产91久久久久 | 欧美日韩在线三区| 欧美绝品在线观看成人午夜影视| 欧美人xxxx| 欧美大片国产精品| 久久精品亚洲国产奇米99| 欧美激情一区二区三区不卡| 亚洲欧洲精品天堂一级| 一区二区视频在线| 亚洲成a人片在线观看中文| 天堂一区二区在线| 国产一区二区不卡在线| 99精品国产99久久久久久白柏| 色老综合老女人久久久| 欧美日韩国产免费一区二区 | 精品无人码麻豆乱码1区2区| 高清在线不卡av| 欧美日韩一区精品| 久久综合久久综合亚洲| 亚洲人成精品久久久久| 日韩成人精品在线| 成人av网在线| 欧美精选在线播放| 国产欧美一区二区三区在线看蜜臀 | 欧美久久久久久久久| 精品人在线二区三区| 亚洲色欲色欲www在线观看| 婷婷中文字幕一区三区| 国产麻豆精品theporn| 色综合久久中文字幕| 精品国产乱码久久久久久牛牛| 国产精品你懂的在线| 日本欧美一区二区三区乱码| 国产mv日韩mv欧美| 欧美精品乱码久久久久久按摩| 国产午夜久久久久| 天堂va蜜桃一区二区三区| 国产盗摄精品一区二区三区在线| 一本色道亚洲精品aⅴ| 日韩一区二区免费在线电影| 亚洲免费观看高清完整版在线观看 | 亚洲一区中文日韩| 国产精品综合久久| 91麻豆精品国产自产在线| 国产精品三级av在线播放| 日韩成人伦理电影在线观看| 91在线国产福利| 久久久精品免费观看| 日韩中文字幕1| 91久久香蕉国产日韩欧美9色| 久久久久久久av麻豆果冻| 天堂精品中文字幕在线| 欧美自拍丝袜亚洲| 国产精品美日韩| 国产精品一区一区三区| 欧美一级视频精品观看| 亚洲成人av福利| 色婷婷精品大视频在线蜜桃视频 | 欧美成人福利视频| 亚洲国产视频在线| 99久久精品免费看国产| 久久无码av三级| 国产伦理精品不卡| 亚洲精品一区二区在线观看| 日本不卡视频在线| 欧美日韩国产综合久久| 一区二区三区在线观看欧美| 99久久伊人网影院| 国产精品区一区二区三区| 风间由美性色一区二区三区| 久久久久久久久蜜桃| 国产专区综合网| 久久久精品tv| 国产69精品久久99不卡| 欧美激情资源网| 不卡的av在线| 亚洲精品日韩综合观看成人91| 在线亚洲精品福利网址导航| 亚洲自拍偷拍欧美| 欧美日韩精品系列|