亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? rfc2460.txt

?? IPv6協議中flow_label的相關RFC
?? TXT
?? 第 1 頁 / 共 5 頁
字號:
                        transmission; ignored on reception.   M flag               1 = more fragments; 0 = last fragment.   Identification       32 bits.  See description below.   In order to send a packet that is too large to fit in the MTU of the   path to its destination, a source node may divide the packet into   fragments and send each fragment as a separate packet, to be   reassembled at the receiver.   For every packet that is to be fragmented, the source node generates   an Identification value. The Identification must be different than   that of any other fragmented packet sent recently* with the same   Source Address and Destination Address.  If a Routing header is   present, the Destination Address of concern is that of the final   destination.Deering & Hinden            Standards Track                    [Page 18]RFC 2460                   IPv6 Specification              December 1998      * "recently" means within the maximum likely lifetime of a packet,        including transit time from source to destination and time spent        awaiting reassembly with other fragments of the same packet.        However, it is not required that a source node know the maximum        packet lifetime.  Rather, it is assumed that the requirement can        be met by maintaining the Identification value as a simple, 32-        bit, "wrap-around" counter, incremented each time a packet must        be fragmented.  It is an implementation choice whether to        maintain a single counter for the node or multiple counters,        e.g., one for each of the node's possible source addresses, or        one for each active (source address, destination address)        combination.   The initial, large, unfragmented packet is referred to as the   "original packet", and it is considered to consist of two parts, as   illustrated:   original packet:   +------------------+----------------------//-----------------------+   |  Unfragmentable  |                 Fragmentable                  |   |       Part       |                     Part                      |   +------------------+----------------------//-----------------------+      The Unfragmentable Part consists of the IPv6 header plus any      extension headers that must be processed by nodes en route to the      destination, that is, all headers up to and including the Routing      header if present, else the Hop-by-Hop Options header if present,      else no extension headers.      The Fragmentable Part consists of the rest of the packet, that is,      any extension headers that need be processed only by the final      destination node(s), plus the upper-layer header and data.   The Fragmentable Part of the original packet is divided into   fragments, each, except possibly the last ("rightmost") one, being an   integer multiple of 8 octets long.  The fragments are transmitted in   separate "fragment packets" as illustrated:   original packet:   +------------------+--------------+--------------+--//--+----------+   |  Unfragmentable  |    first     |    second    |      |   last   |   |       Part       |   fragment   |   fragment   | .... | fragment |   +------------------+--------------+--------------+--//--+----------+Deering & Hinden            Standards Track                    [Page 19]RFC 2460                   IPv6 Specification              December 1998   fragment packets:   +------------------+--------+--------------+   |  Unfragmentable  |Fragment|    first     |   |       Part       | Header |   fragment   |   +------------------+--------+--------------+   +------------------+--------+--------------+   |  Unfragmentable  |Fragment|    second    |   |       Part       | Header |   fragment   |   +------------------+--------+--------------+                         o                         o                         o   +------------------+--------+----------+   |  Unfragmentable  |Fragment|   last   |   |       Part       | Header | fragment |   +------------------+--------+----------+   Each fragment packet is composed of:      (1) The Unfragmentable Part of the original packet, with the          Payload Length of the original IPv6 header changed to contain          the length of this fragment packet only (excluding the length          of the IPv6 header itself), and the Next Header field of the          last header of the Unfragmentable Part changed to 44.      (2) A Fragment header containing:               The Next Header value that identifies the first header of               the Fragmentable Part of the original packet.               A Fragment Offset containing the offset of the fragment,               in 8-octet units, relative to the start of the               Fragmentable Part of the original packet.  The Fragment               Offset of the first ("leftmost") fragment is 0.               An M flag value of 0 if the fragment is the last               ("rightmost") one, else an M flag value of 1.               The Identification value generated for the original               packet.      (3) The fragment itself.   The lengths of the fragments must be chosen such that the resulting   fragment packets fit within the MTU of the path to the packets'   destination(s).Deering & Hinden            Standards Track                    [Page 20]RFC 2460                   IPv6 Specification              December 1998   At the destination, fragment packets are reassembled into their   original, unfragmented form, as illustrated:   reassembled original packet:   +------------------+----------------------//------------------------+   |  Unfragmentable  |                 Fragmentable                   |   |       Part       |                     Part                       |   +------------------+----------------------//------------------------+   The following rules govern reassembly:      An original packet is reassembled only from fragment packets that      have the same Source Address, Destination Address, and Fragment      Identification.      The Unfragmentable Part of the reassembled packet consists of all      headers up to, but not including, the Fragment header of the first      fragment packet (that is, the packet whose Fragment Offset is      zero), with the following two changes:         The Next Header field of the last header of the Unfragmentable         Part is obtained from the Next Header field of the first         fragment's Fragment header.         The Payload Length of the reassembled packet is computed from         the length of the Unfragmentable Part and the length and offset         of the last fragment.  For example, a formula for computing the         Payload Length of the reassembled original packet is:           PL.orig = PL.first - FL.first - 8 + (8 * FO.last) + FL.last           where           PL.orig  = Payload Length field of reassembled packet.           PL.first = Payload Length field of first fragment packet.           FL.first = length of fragment following Fragment header of                      first fragment packet.           FO.last  = Fragment Offset field of Fragment header of                      last fragment packet.           FL.last  = length of fragment following Fragment header of                      last fragment packet.      The Fragmentable Part of the reassembled packet is constructed      from the fragments following the Fragment headers in each of the      fragment packets.  The length of each fragment is computed by      subtracting from the packet's Payload Length the length of theDeering & Hinden            Standards Track                    [Page 21]RFC 2460                   IPv6 Specification              December 1998      headers between the IPv6 header and fragment itself; its relative      position in Fragmentable Part is computed from its Fragment Offset      value.      The Fragment header is not present in the final, reassembled      packet.   The following error conditions may arise when reassembling fragmented   packets:      If insufficient fragments are received to complete reassembly of a      packet within 60 seconds of the reception of the first-arriving      fragment of that packet, reassembly of that packet must be      abandoned and all the fragments that have been received for that      packet must be discarded.  If the first fragment (i.e., the one      with a Fragment Offset of zero) has been received, an ICMP Time      Exceeded -- Fragment Reassembly Time Exceeded message should be      sent to the source of that fragment.      If the length of a fragment, as derived from the fragment packet's      Payload Length field, is not a multiple of 8 octets and the M flag      of that fragment is 1, then that fragment must be discarded and an      ICMP Parameter Problem, Code 0, message should be sent to the      source of the fragment, pointing to the Payload Length field of      the fragment packet.      If the length and offset of a fragment are such that the Payload      Length of the packet reassembled from that fragment would exceed      65,535 octets, then that fragment must be discarded and an ICMP      Parameter Problem, Code 0, message should be sent to the source of      the fragment, pointing to the Fragment Offset field of the      fragment packet.   The following conditions are not expected to occur, but are not   considered errors if they do:      The number and content of the headers preceding the Fragment      header of different fragments of the same original packet may      differ.  Whatever headers are present, preceding the Fragment      header in each fragment packet, are processed when the packets      arrive, prior to queueing the fragments for reassembly.  Only      those headers in the Offset zero fragment packet are retained in      the reassembled packet.      The Next Header values in the Fragment headers of different      fragments of the same original packet may differ.  Only the value      from the Offset zero fragment packet is used for reassembly.Deering & Hinden            Standards Track                    [Page 22]RFC 2460                   IPv6 Specification              December 19984.6  Destination Options Header   The Destination Options header is used to carry optional information   that need be examined only by a packet's destination node(s).  The   Destination Options header is identified by a Next Header value of 60   in the immediately preceding header, and has the following format:    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |  Next Header  |  Hdr Ext Len  |                               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +    |                                                               |    .                                                               .    .                            Options                            .    .                                                               .    |                                                               |    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   Next Header          8-bit selector.  Identifies the type of header                        immediately following the Destination Options                        header.  Uses the same values as the IPv4                        Protocol field [RFC-1700 et seq.].   Hdr Ext Len          8-bit unsigned integer.  Length of the                        Destination Options header in 8-octet units, not                        including the first 8 octets.   Options              Variable-length field, of length such that the                        complete Destination Options header is an                        integer multiple of 8 octets long.  Contains one                        or  more TLV-encoded options, as described in                        section 4.2.   The only destination options defined in this document are the Pad1   and PadN options specified in section 4.2.   Note that there are two possible ways to encode optional destination   information in an IPv6 packet: either as an option in the Destination   Options header, or as a separate extension header.  The Fragment   header and the Authentication header are examples of the latter   approach.  Which approach can be used depends on what action is   desired of a destination node that does not understand the optional   information:      o  If the desired action is for the destination node to discard         the packet and, only if the packet's Destination Address is not         a multicast address, send an ICMP Unrecognized Type message to         the packet's Source Address, then the information may be         encoded either as a separate header or as an option in theDeering & Hinden            Standards Track                    [Page 23]RFC 2460                   IPv6 Specification              December 1998         Destination Options header whose Option Type has the value 11         in its highest-order two bits.  The choice may depend on such         factors as which takes fewer octets, or which yields better         alignment or more efficient parsing.      o  If any other action is desired, the information must be encoded         as an option in the Destination Options header whose Option         Type has the value 00, 01, or 10 in its highest-order two bits,         specifying the desired action (see section 4.2).4.7 No Next Header   The value 59 in the Next Header field of an IPv6 header or any   extension header indicates that there is nothing following that   header.  If the Payload Length field of the IPv6 header indicates the   presence of octets past the end of a header whose Next Header field   contains 59, those octets must be ignored, and passed on unchanged if   the packet is forwarded.5. Packet Size Issues   IPv6 requires that every link in the internet have an MTU of 1280

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久亚洲高清| 亚洲成人先锋电影| 亚洲国产人成综合网站| 国产成人综合自拍| 欧美午夜视频网站| 国产精品美日韩| 久久国产精品露脸对白| 欧美日韩国产精选| 国产精品国产自产拍高清av | 一区二区在线观看免费视频播放| 首页综合国产亚洲丝袜| 91丨九色porny丨蝌蚪| www国产精品av| 蜜臀av性久久久久蜜臀aⅴ| 在线视频综合导航| 亚洲图片你懂的| 大桥未久av一区二区三区中文| 欧美一级国产精品| 亚洲成人午夜电影| 色美美综合视频| 国产精品国产自产拍在线| 成人理论电影网| 欧美高清在线一区| 春色校园综合激情亚洲| 亚洲国产精品成人综合| 国产成人精品免费在线| 国产亚洲成年网址在线观看| 国产一区二区三区久久久 | 美国十次综合导航| 日韩一二三区视频| 美女在线视频一区| 精品国内片67194| 激情伊人五月天久久综合| 日韩一区二区三区在线视频| 麻豆精品视频在线观看| 欧美不卡123| 国产乱色国产精品免费视频| 久久欧美一区二区| 国产+成+人+亚洲欧洲自线| 国产网站一区二区| 99视频一区二区| 亚洲男女一区二区三区| 欧美影视一区在线| 全国精品久久少妇| 26uuu亚洲| 成人美女视频在线看| 亚洲女人小视频在线观看| 在线观看视频91| 日韩电影在线一区| 久久综合九色综合97婷婷| 国产成人aaaa| 一区二区三国产精华液| 欧美精品1区2区| 国产精品自拍三区| 中文字幕在线观看一区| 欧美丝袜第三区| 精品影视av免费| 国产精品视频免费| 欧美私模裸体表演在线观看| 狠狠色丁香婷婷综合久久片| 中文字幕日韩精品一区| 欧美精品自拍偷拍动漫精品| 国产精品一区在线| 亚洲高清久久久| 久久精品日产第一区二区三区高清版| 97久久精品人人澡人人爽| 日韩一区欧美二区| 中文一区二区完整视频在线观看| 日本精品一区二区三区高清| 九色porny丨国产精品| 国产精品久久久久久久久免费相片| 在线观看日韩av先锋影音电影院| 另类人妖一区二区av| 最新日韩在线视频| 91精品蜜臀在线一区尤物| 成人中文字幕电影| 欧美aⅴ一区二区三区视频| 国产精品久久久久四虎| 日韩欧美在线一区二区三区| 色婷婷亚洲婷婷| 精品影院一区二区久久久| 一区二区三区四区在线| 久久久久久久精| 51精品秘密在线观看| 97精品久久久午夜一区二区三区| 久久99久久99精品免视看婷婷 | 一本一道久久a久久精品| 狠狠v欧美v日韩v亚洲ⅴ| 天天综合天天综合色| 亚洲色图视频网站| 久久精品在这里| 欧美α欧美αv大片| 欧美日韩美女一区二区| 99久久国产综合精品女不卡| 国产在线播放一区三区四| 日韩精品成人一区二区三区| 亚洲综合一区二区| 国产精品成人免费 | 欧美一区二区视频在线观看 | 不卡视频一二三四| 精品一区二区三区在线播放视频| 午夜精品久久久久久| 夜夜嗨av一区二区三区四季av| 欧美国产日韩在线观看| 国产午夜一区二区三区| 精品国产凹凸成av人导航| 日韩欧美国产一区在线观看| 欧美一级免费观看| 91精品国产麻豆| 日韩视频一区二区三区在线播放| 欧美日韩综合在线免费观看| 91九色02白丝porn| 欧美午夜精品久久久| 欧美色偷偷大香| 67194成人在线观看| 欧美疯狂做受xxxx富婆| 欧美日韩一级视频| 在线播放日韩导航| 欧美电影免费观看高清完整版在线| 日韩一区二区三区在线观看| 日韩免费观看高清完整版 | 亚洲一区精品在线| 亚洲一卡二卡三卡四卡无卡久久| 亚洲一区二区高清| 日韩高清在线不卡| 国产一区不卡在线| 波波电影院一区二区三区| 93久久精品日日躁夜夜躁欧美| 色国产精品一区在线观看| 欧美色成人综合| 欧美一区二区三区成人| 精品久久久久久久久久久久包黑料| 久久综合网色—综合色88| 国产精品污www在线观看| 亚洲视频每日更新| 日韩成人伦理电影在线观看| 国产最新精品免费| 99re视频这里只有精品| 这里是久久伊人| 国产日韩欧美a| 亚洲免费色视频| 蜜臀91精品一区二区三区| 国产成人8x视频一区二区| 欧美在线视频不卡| 欧美精品一区二区三区在线 | 色av成人天堂桃色av| 91精品婷婷国产综合久久性色| www久久久久| 亚洲另类在线一区| 极品少妇xxxx偷拍精品少妇| 不卡一区二区三区四区| 欧美一区二区三区人| 综合欧美亚洲日本| 美日韩一级片在线观看| 色综合久久久久综合99| 精品国产乱码久久久久久久| 亚洲美女淫视频| 精品一区二区三区久久久| 色琪琪一区二区三区亚洲区| 欧美va亚洲va在线观看蝴蝶网| 亚洲色图制服诱惑 | 丁香桃色午夜亚洲一区二区三区| 在线观看日韩电影| 国产人久久人人人人爽| 偷窥国产亚洲免费视频| 成人黄色免费短视频| 91麻豆精品国产91久久久资源速度 | 欧美国产乱子伦| 日韩成人伦理电影在线观看| 色悠久久久久综合欧美99| 久久综合视频网| 天天亚洲美女在线视频| 91蜜桃免费观看视频| 久久久国产一区二区三区四区小说 | 91免费视频观看| 欧美精品一区二区在线观看| 午夜伊人狠狠久久| 色网综合在线观看| 国产欧美精品日韩区二区麻豆天美| 天天综合天天做天天综合| 91视视频在线直接观看在线看网页在线看| 91麻豆精品国产无毒不卡在线观看 | 日韩一区和二区| 亚洲综合在线第一页| 91视频com| 国产精品成人网| youjizz久久| 国产精品护士白丝一区av| 国产91丝袜在线18| 久久久久国产精品麻豆ai换脸| 久久丁香综合五月国产三级网站| 欧美日韩国产乱码电影| 天天亚洲美女在线视频| 欧美日韩视频在线观看一区二区三区| 亚洲欧美日韩国产一区二区三区 | 亚洲欧美韩国综合色| 成人avav影音| 日韩伦理av电影| 99久久精品国产导航| 亚洲欧美日韩人成在线播放|