?? rfc2831.txt
字號:
where Ki is Kic for messages sent by the client and Kis for those sent by the server. The sequence number is initialized to zero, and incremented by one for each message sent. Upon receipt, MAC(Ki, SeqNum, msg) is computed and compared with the received value; the message is discarded if they differ.2.4 Confidentiality Protection If the server sent a "cipher-opts" directive and the client responded with a "cipher" directive, then subsequent messages between the client and the server MUST be confidentiality protected. Using as a base session key the value of H(A1) as defined above the client and server calculate a pair of message integrity keys as follows. The key for confidentiality protecting messages from client to server is: Kcc = MD5({H(A1)[0..n], "Digest H(A1) to client-to-server sealing key magic constant"}) The key for confidentiality protecting messages from server to client is:Leach & Newman Standards Track [Page 14]RFC 2831 Digest SASL Mechanism May 2000 Kcs = MD5({H(A1)[0..n], "Digest H(A1) to server-to-client sealing key magic constant"}) where MD5 is as specified in [RFC 1321]. For cipher "rc4-40" n is 5; for "rc4-56" n is 7; for the rest n is 16. The key for the "rc-*" ciphers is all 16 bytes of Kcc or Kcs; the key for "des" is the first 7 bytes; the key for "3des" is the first 14 bytes. The IV for "des" and "3des" is the last 8 bytes of Kcc or Kcs. If message confidentiality is negotiated, each message is encrypted with the chosen cipher and a MAC block is appended to the message. The MAC block is a variable length padding prefix followed by 16 bytes formatted as follows: the first 10 bytes of the HMAC-MD5 [RFC 2104] of the message, a 2-byte message type number in network byte order with value 1, and the 4-byte sequence number in network byte order. If the blocksize of the chosen cipher is not 1 byte, the padding prefix is one or more octets each containing the number of padding bytes, such that total length of the encrypted part of the message is a multiple of the blocksize. The padding and first 10 bytes of the MAC block are encrypted along with the message. SEAL(Ki, Kc, SeqNum, msg) = {CIPHER(Kc, {msg, pad, HMAC(Ki, {SeqNum, msg})[0..9])}), 0x0001, SeqNum} where CIPHER is the chosen cipher, Ki and Kc are Kic and Kcc for messages sent by the client and Kis and Kcs for those sent by the server. The sequence number is initialized to zero, and incremented by one for each message sent. Upon receipt, the message is decrypted, HMAC(Ki, {SeqNum, msg}) is computed and compared with the received value; the message is discarded if they differ.3 Security Considerations3.1 Authentication of Clients using Digest Authentication Digest Authentication does not provide a strong authentication mechanism, when compared to public key based mechanisms, for example. However, since it prevents chosen plaintext attacks, it is stronger than (e.g.) CRAM-MD5, which has been proposed for use with LDAP [10], POP and IMAP (see RFC 2195 [9]). It is intended to replace the much weaker and even more dangerous use of plaintext passwords; however, since it is still a password based mechanism it avoids some of the potential deployabilty issues with public-key, OTP or similar mechanisms.Leach & Newman Standards Track [Page 15]RFC 2831 Digest SASL Mechanism May 2000 Digest Authentication offers no confidentiality protection beyond protecting the actual password. All of the rest of the challenge and response are available to an eavesdropper, including the user's name and authentication realm.3.2 Comparison of Digest with Plaintext Passwords The greatest threat to the type of transactions for which these protocols are used is network snooping. This kind of transaction might involve, for example, online access to a mail service whose use is restricted to paying subscribers. With plaintext password authentication an eavesdropper can obtain the password of the user. This not only permits him to access anything in the database, but, often worse, will permit access to anything else the user protects with the same password.3.3 Replay Attacks Replay attacks are defeated if the client or the server chooses a fresh nonce for each authentication, as this specification requires.3.4 Online dictionary attacks If the attacker can eavesdrop, then it can test any overheard nonce/response pairs against a (potentially very large) list of common words. Such a list is usually much smaller than the total number of possible passwords. The cost of computing the response for each password on the list is paid once for each challenge. The server can mitigate this attack by not allowing users to select passwords that are in a dictionary.3.5 Offline dictionary attacks If the attacker can choose the challenge, then it can precompute the possible responses to that challenge for a list of common words. Such a list is usually much smaller than the total number of possible passwords. The cost of computing the response for each password on the list is paid just once. Offline dictionary attacks are defeated if the client chooses a fresh nonce for each authentication, as this specification requires.Leach & Newman Standards Track [Page 16]RFC 2831 Digest SASL Mechanism May 20003.6 Man in the Middle Digest authentication is vulnerable to "man in the middle" (MITM) attacks. Clearly, a MITM would present all the problems of eavesdropping. But it also offers some additional opportunities to the attacker. A possible man-in-the-middle attack would be to substitute a weaker qop scheme for the one(s) sent by the server; the server will not be able to detect this attack. For this reason, the client should always use the strongest scheme that it understands from the choices offered, and should never choose a scheme that does not meet its minimum requirements.3.7 Chosen plaintext attacks A chosen plaintext attack is where a MITM or a malicious server can arbitrarily choose the challenge that the client will use to compute the response. The ability to choose the challenge is known to make cryptanalysis much easier [8]. However, Digest does not permit the attack to choose the challenge as long as the client chooses a fresh nonce for each authentication, as this specification requires.3.8 Spoofing by Counterfeit Servers If a user can be led to believe that she is connecting to a host containing information protected by a password she knows, when in fact she is connecting to a hostile server, then the hostile server can obtain challenge/response pairs where it was able to partly choose the challenge. There is no known way that this can be exploited.3.9 Storing passwords Digest authentication requires that the authenticating agent (usually the server) store some data derived from the user's name and password in a "password file" associated with a given realm. Normally this might contain pairs consisting of username and H({ username-value, ":", realm-value, ":", passwd }), which is adequate to compute H(A1) as described above without directly exposing the user's password. The security implications of this are that if this password file is compromised, then an attacker gains immediate access to documents on the server using this realm. Unlike, say a standard UNIX password file, this information need not be decrypted in order to access documents in the server realm associated with this file. On the otherLeach & Newman Standards Track [Page 17]RFC 2831 Digest SASL Mechanism May 2000 hand, decryption, or more likely a brute force attack, would be necessary to obtain the user's password. This is the reason that the realm is part of the digested data stored in the password file. It means that if one Digest authentication password file is compromised, it does not automatically compromise others with the same username and password (though it does expose them to brute force attack). There are two important security consequences of this. First the password file must be protected as if it contained plaintext passwords, because for the purpose of accessing documents in its realm, it effectively does. A second consequence of this is that the realm string should be unique among all realms that any single user is likely to use. In particular a realm string should include the name of the host doing the authentication.3.10 Multiple realms Use of multiple realms may mean both that compromise of a the security database for a single realm does not compromise all security, and that there are more things to protect in order to keep the whole system secure.3.11 Summary By modern cryptographic standards Digest Authentication is weak, compared to (say) public key based mechanisms. But for a large range of purposes it is valuable as a replacement for plaintext passwords. Its strength may vary depending on the implementation.4 Example This example shows the use of the Digest SASL mechanism with the IMAP4 AUTHENTICATE command [RFC 2060]. In this example, "C:" and "S:" represent a line sent by the client or server respectively including a CRLF at the end. Linebreaks and indentation within a "C:" or "S:" are editorial and not part of the protocol. The password in this example was "secret". Note that the base64 encoding of the challenges and responses is part of the IMAP4 AUTHENTICATE command, not part of the Digest specification itself. S: * OK elwood.innosoft.com PMDF IMAP4rev1 V6.0-9 C: c CAPABILITY S: * CAPABILITY IMAP4 IMAP4rev1 ACL LITERAL+ NAMESPACE QUOTA UIDPLUS AUTH=CRAM-MD5 AUTH=DIGEST-MD5 AUTH=PLAIN S: c OK CompletedLeach & Newman Standards Track [Page 18]RFC 2831 Digest SASL Mechanism May 2000 C: a AUTHENTICATE DIGEST-MD5 S: + cmVhbG09ImVsd29vZC5pbm5vc29mdC5jb20iLG5vbmNlPSJPQTZNRzl0 RVFHbTJoaCIscW9wPSJhdXRoIixhbGdvcml0aG09bWQ1LXNlc3MsY2hh cnNldD11dGYtOA== C: Y2hhcnNldD11dGYtOCx1c2VybmFtZT0iY2hyaXMiLHJlYWxtPSJlbHdvb2 QuaW5ub3NvZnQuY29tIixub25jZT0iT0E2TUc5dEVRR20yaGgiLG5jPTAw MDAwMDAxLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLGRpZ2VzdC11cmk9Im ltYXAvZWx3b29kLmlubm9zb2Z0LmNvbSIscmVzcG9uc2U9ZDM4OGRhZDkw ZDRiYmQ3NjBhMTUyMzIxZjIxNDNhZjcscW9wPWF1dGg= S: + cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZA== C: S: a OK User logged in --- The base64-decoded version of the SASL exchange is: S: realm="elwood.innosoft.com",nonce="OA6MG9tEQGm2hh",qop="auth", algorithm=md5-sess,charset=utf-8 C: charset=utf-8,username="chris",realm="elwood.innosoft.com", nonce="OA6MG9tEQGm2hh",nc=00000001,cnonce="OA6MHXh6VqTrRk", digest-uri="imap/elwood.innosoft.com", response=d388dad90d4bbd760a152321f2143af7,qop=auth S: rspauth=ea40f60335c427b5527b84dbabcdfffd The password in this example was "secret". This example shows the use of the Digest SASL mechanism with the ACAP, using the same notational conventions and password as in the previous example. Note that ACAP does not base64 encode and uses fewer round trips that IMAP4. S: * ACAP (IMPLEMENTATION "Test ACAP server") (SASL "CRAM-MD5" "DIGEST-MD5" "PLAIN") C: a AUTHENTICATE "DIGEST-MD5" S: + {94} S: realm="elwood.innosoft.com",nonce="OA9BSXrbuRhWay",qop="auth", algorithm=md5-sess,charset=utf-8 C: {206} C: charset=utf-8,username="chris",realm="elwood.innosoft.com", nonce="OA9BSXrbuRhWay",nc=00000001,cnonce="OA9BSuZWMSpW8m", digest-uri="acap/elwood.innosoft.com", response=6084c6db3fede7352c551284490fd0fc,qop=auth S: a OK (SASL {40} S: rspauth=2f0b3d7c3c2e486600ef710726aa2eae) "AUTHENTICATE Completed" ---Leach & Newman Standards Track [Page 19]RFC 2831 Digest SASL Mechanism May 2000 The server uses the values of all the directives, plus knowledge of the users password (or the hash of the user's name, server's realm and the user's password) to verify the computations above. If they check, then the user has authenticated.5 References [Digest] Franks, J., et al., "HTTP Authentication: Basic and Digest Access Authentication", RFC 2617, June 1999. [ISO-8859] ISO-8859. International Standard--Information Processing-- 8-bit Single-Byte Coded Graphic Character Sets -- Part 1: Latin alphabet No. 1, ISO-8859-1:1987. Part 2: Latin alphabet No. 2, ISO-8859-2, 1987. Part 3: Latin alphabet No. 3, ISO-8859-3, 1988. Part 4: Latin alphabet No. 4, ISO-8859-4, 1988. Part 5: Latin/Cyrillic alphabet, ISO-8859-5, 1988. Part 6: Latin/Arabic alphabet, ISO-8859-6, 1987. Part 7: Latin/Greek alphabet, ISO-8859-7, 1987. Part 8: Latin/Hebrew alphabet, ISO-8859-8, 1988. Part 9: Latin alphabet No. 5, ISO-8859-9, 1990. [RFC 822] Crocker, D., "Standard for The Format of ARPA Internet Text Messages," STD 11, RFC 822, August 1982. [RFC 1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992. [RFC 2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text", RFC 2047, November 1996. [RFC 2052] Gulbrandsen, A. and P. Vixie, "A DNS RR for specifying the location of services (DNS SRV)", RFC 2052, October 1996. [RFC 2060] Crispin, M., "Internet Message Access Protocol - Version 4rev1", RFC 2060, December 1996. [RFC 2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed- Hashing for Message Authentication", RFC 2104, February 1997. [RFC 2195] Klensin, J., Catoe, R. and P. Krumviede, "IMAP/POP AUTHorize Extension for Simple Challenge/Response", RFC 2195, September 1997.Leach & Newman Standards Track [Page 20]RFC 2831 Digest SASL Mechanism May 2000 [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC 2222] Myers, J., "Simple Authentication and Security Layer (SASL)", RFC 2222, October 1997. [USASCII] US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information Interchange. Standard ANSI X3.4-1986, ANSI, 1986.6 Authors' Addresses
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -