?? afxtempl.h
字號:
// This is a part of the Microsoft Foundation Classes C++ library.
// Copyright (C) 1992-1998 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Microsoft Foundation Classes Reference and related
// electronic documentation provided with the library.
// See these sources for detailed information regarding the
// Microsoft Foundation Classes product.
#ifndef __AFXTEMPL_H__
#define __AFXTEMPL_H__
#ifndef __AFXPLEX_H__
#include <afxplex_.h>
#endif
#ifdef _AFX_MINREBUILD
#pragma component(minrebuild, off)
#endif
#ifndef _AFX_FULLTYPEINFO
#pragma component(mintypeinfo, on)
#endif
#ifdef _AFX_PACKING
#pragma pack(push, _AFX_PACKING)
#endif
#ifdef _DEBUG
static char _szAfxTempl[] = "afxtempl.h";
#undef THIS_FILE
#define THIS_FILE _szAfxTempl
#endif
#ifndef ALL_WARNINGS
#pragma warning(disable: 4114)
#endif
/////////////////////////////////////////////////////////////////////////////
// global helpers (can be overridden)
#ifdef new
#undef new
#define _REDEF_NEW
#endif
#ifndef _INC_NEW
#include <new.h>
#endif
template<class TYPE>
AFX_INLINE void AFXAPI ConstructElements(TYPE* pElements, int nCount)
{
ASSERT(nCount == 0 ||
AfxIsValidAddress(pElements, nCount * sizeof(TYPE)));
// first do bit-wise zero initialization
memset((void*)pElements, 0, nCount * sizeof(TYPE));
// then call the constructor(s)
for (; nCount--; pElements++)
::new((void*)pElements) TYPE;
}
template<class TYPE>
AFX_INLINE void AFXAPI DestructElements(TYPE* pElements, int nCount)
{
ASSERT(nCount == 0 ||
AfxIsValidAddress(pElements, nCount * sizeof(TYPE)));
// call the destructor(s)
for (; nCount--; pElements++)
pElements->~TYPE();
}
template<class TYPE>
AFX_INLINE void AFXAPI CopyElements(TYPE* pDest, const TYPE* pSrc, int nCount)
{
ASSERT(nCount == 0 ||
AfxIsValidAddress(pDest, nCount * sizeof(TYPE)));
ASSERT(nCount == 0 ||
AfxIsValidAddress(pSrc, nCount * sizeof(TYPE)));
// default is element-copy using assignment
while (nCount--)
*pDest++ = *pSrc++;
}
template<class TYPE>
void AFXAPI SerializeElements(CArchive& ar, TYPE* pElements, int nCount)
{
ASSERT(nCount == 0 ||
AfxIsValidAddress(pElements, nCount * sizeof(TYPE)));
// default is bit-wise read/write
if (ar.IsStoring())
ar.Write((void*)pElements, nCount * sizeof(TYPE));
else
ar.Read((void*)pElements, nCount * sizeof(TYPE));
}
#ifdef _DEBUG
template<class TYPE>
void AFXAPI DumpElements(CDumpContext& dc, const TYPE* pElements, int nCount)
{
ASSERT(nCount == 0 ||
AfxIsValidAddress(pElements, nCount * sizeof(TYPE), FALSE));
&dc; // not used
pElements; // not used
nCount; // not used
// default does nothing
}
#endif
template<class TYPE, class ARG_TYPE>
BOOL AFXAPI CompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2)
{
ASSERT(AfxIsValidAddress(pElement1, sizeof(TYPE), FALSE));
ASSERT(AfxIsValidAddress(pElement2, sizeof(ARG_TYPE), FALSE));
return *pElement1 == *pElement2;
}
template<class ARG_KEY>
AFX_INLINE UINT AFXAPI HashKey(ARG_KEY key)
{
// default identity hash - works for most primitive values
return ((UINT)(void*)(DWORD)key) >> 4;
}
// special versions for CString
#if _MSC_VER >= 1100
template<> void AFXAPI ConstructElements<CString> (CString* pElements, int nCount);
template<> void AFXAPI DestructElements<CString> (CString* pElements, int nCount);
template<> void AFXAPI CopyElements<CString> (CString* pDest, const CString* pSrc, int nCount);
template<> void AFXAPI SerializeElements<CString> (CArchive& ar, CString* pElements, int nCount);
#ifndef OLE2ANSI
template<> UINT AFXAPI HashKey<LPCWSTR> (LPCWSTR key);
#endif
template<> UINT AFXAPI HashKey<LPCSTR> (LPCSTR key);
#else // _MSC_VER >= 1100
void AFXAPI ConstructElements(CString* pElements, int nCount);
void AFXAPI DestructElements(CString* pElements, int nCount);
void AFXAPI CopyElements(CString* pDest, const CString* pSrc, int nCount);
void AFXAPI SerializeElements(CArchive& ar, CString* pElements, int nCount);
#ifndef OLE2ANSI
UINT AFXAPI HashKey(LPCWSTR key);
#endif
UINT AFXAPI HashKey(LPCSTR key);
#endif // _MSC_VER >= 1100
// forward declarations
class COleVariant;
struct tagVARIANT;
// special versions for COleVariant
#if _MSC_VER >= 1100
template<> void AFXAPI ConstructElements<COleVariant> (COleVariant* pElements, int nCount);
template<> void AFXAPI DestructElements<COleVariant> (COleVariant* pElements, int nCount);
template<> void AFXAPI CopyElements<COleVariant> (COleVariant* pDest, const COleVariant* pSrc, int nCount);
template<> void AFXAPI SerializeElements<COleVariant> (CArchive& ar, COleVariant* pElements, int nCount);
#ifdef _DEBUG
template<> void AFXAPI DumpElements<COleVariant> (CDumpContext& dc, const COleVariant* pElements, int nCount);
#endif
template<> UINT AFXAPI HashKey<const struct tagVARIANT&> (const struct tagVARIANT& var);
#else // _MSC_VER >= 1100
void AFXAPI ConstructElements(COleVariant* pElements, int nCount);
void AFXAPI DestructElements(COleVariant* pElements, int nCount);
void AFXAPI CopyElements(COleVariant* pDest, const COleVariant* pSrc, int nCount);
void AFXAPI SerializeElements(CArchive& ar, COleVariant* pElements, int nCount);
#ifdef _DEBUG
void AFXAPI DumpElements(CDumpContext& dc, const COleVariant* pElements, int nCount);
#endif
UINT AFXAPI HashKey(const struct tagVARIANT& var);
#endif // _MSC_VER >= 1100
#define new DEBUG_NEW
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE>
template<class TYPE, class ARG_TYPE>
class CArray : public CObject
{
public:
// Construction
CArray();
// Attributes
int GetSize() const;
int GetUpperBound() const;
void SetSize(int nNewSize, int nGrowBy = -1);
// Operations
// Clean up
void FreeExtra();
void RemoveAll();
// Accessing elements
TYPE GetAt(int nIndex) const;
void SetAt(int nIndex, ARG_TYPE newElement);
TYPE& ElementAt(int nIndex);
// Direct Access to the element data (may return NULL)
const TYPE* GetData() const;
TYPE* GetData();
// Potentially growing the array
void SetAtGrow(int nIndex, ARG_TYPE newElement);
int Add(ARG_TYPE newElement);
int Append(const CArray& src);
void Copy(const CArray& src);
// overloaded operator helpers
TYPE operator[](int nIndex) const;
TYPE& operator[](int nIndex);
// Operations that move elements around
void InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1);
void RemoveAt(int nIndex, int nCount = 1);
void InsertAt(int nStartIndex, CArray* pNewArray);
// Implementation
protected:
TYPE* m_pData; // the actual array of data
int m_nSize; // # of elements (upperBound - 1)
int m_nMaxSize; // max allocated
int m_nGrowBy; // grow amount
public:
~CArray();
void Serialize(CArchive&);
#ifdef _DEBUG
void Dump(CDumpContext&) const;
void AssertValid() const;
#endif
};
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE> inline functions
template<class TYPE, class ARG_TYPE>
AFX_INLINE int CArray<TYPE, ARG_TYPE>::GetSize() const
{ return m_nSize; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE int CArray<TYPE, ARG_TYPE>::GetUpperBound() const
{ return m_nSize-1; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE void CArray<TYPE, ARG_TYPE>::RemoveAll()
{ SetSize(0, -1); }
template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE CArray<TYPE, ARG_TYPE>::GetAt(int nIndex) const
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE void CArray<TYPE, ARG_TYPE>::SetAt(int nIndex, ARG_TYPE newElement)
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
m_pData[nIndex] = newElement; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE& CArray<TYPE, ARG_TYPE>::ElementAt(int nIndex)
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE const TYPE* CArray<TYPE, ARG_TYPE>::GetData() const
{ return (const TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE* CArray<TYPE, ARG_TYPE>::GetData()
{ return (TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement)
{ int nIndex = m_nSize;
SetAtGrow(nIndex, newElement);
return nIndex; }
template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE CArray<TYPE, ARG_TYPE>::operator[](int nIndex) const
{ return GetAt(nIndex); }
template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE& CArray<TYPE, ARG_TYPE>::operator[](int nIndex)
{ return ElementAt(nIndex); }
/////////////////////////////////////////////////////////////////////////////
// CArray<TYPE, ARG_TYPE> out-of-line functions
template<class TYPE, class ARG_TYPE>
CArray<TYPE, ARG_TYPE>::CArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
template<class TYPE, class ARG_TYPE>
CArray<TYPE, ARG_TYPE>::~CArray()
{
ASSERT_VALID(this);
if (m_pData != NULL)
{
DestructElements<TYPE>(m_pData, m_nSize);
delete[] (BYTE*)m_pData;
}
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy)
{
ASSERT_VALID(this);
ASSERT(nNewSize >= 0);
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
if (m_pData != NULL)
{
DestructElements<TYPE>(m_pData, m_nSize);
delete[] (BYTE*)m_pData;
m_pData = NULL;
}
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
ASSERT(nNewSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)];
ConstructElements<TYPE>(m_pData, nNewSize);
m_nSize = m_nMaxSize = nNewSize;
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
ConstructElements<TYPE>(&m_pData[m_nSize], nNewSize-m_nSize);
}
else if (m_nSize > nNewSize)
{
// destroy the old elements
DestructElements<TYPE>(&m_pData[nNewSize], m_nSize-nNewSize);
}
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = m_nSize / 8;
nGrowBy = (nGrowBy < 4) ? 4 : ((nGrowBy > 1024) ? 1024 : nGrowBy);
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT(nNewMax <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// construct remaining elements
ASSERT(nNewSize > m_nSize);
ConstructElements<TYPE>(&pNewData[m_nSize], nNewSize-m_nSize);
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
template<class TYPE, class ARG_TYPE>
int CArray<TYPE, ARG_TYPE>::Append(const CArray& src)
{
ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
CopyElements<TYPE>(m_pData + nOldSize, src.m_pData, src.m_nSize);
return nOldSize;
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::Copy(const CArray& src)
{
ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
SetSize(src.m_nSize);
CopyElements<TYPE>(m_pData, src.m_pData, src.m_nSize);
}
template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::FreeExtra()
{
ASSERT_VALID(this);
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
ASSERT(m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
TYPE* pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -