?? 動態規劃加速原理.cpp
字號:
/*
動態規劃加速原理:
許多動態規劃求解問題具有類似的遞歸計算式。
設w(i,j)屬于R,1<=i<j<=n。且m(i,j)的遞歸計算式為:
m(i,i)=0,1<=i<=n
m(i,j) = w(i,j) + min{i<k<=j}{m(i,k-1)+m(k,j)},1<=i<j<=n
最優二叉搜索樹問題的動態規劃遞歸式是上述遞歸式的特殊情形/
*/
/*
O(n^3)的時間算法:
*/
void DynamicProgramming( int n, int **m, int **s, int **w )
{
for( int i = 1; i <= n; ++i )
{
m[i][i] = 0;
s[i][i] = 0;
}
for( int r = 1; r <= n; ++r )
{
for( int i = 1; i <= n - r; ++i )
{
int j = i + r;
w[i][j] = weight(i,j);
m[i][j] = m[i+1][j];
s[i][j] = i;
for( int k = i + 1; k < j; ++k )
{
int t = m[i][k] + m[k+1][j];
if ( t <= m[i][j] )
{
m[i][j] = t;
s[i][j] = k;
}
}
m[i][j] += w[i][j];
}
}
}
/*
算法需要O(n^3)計算時間和O(n^2)空間
*/
/*
四邊不等式:
在上述計算m(i,j)的遞歸式中,當函數w(i,j)滿足
w(i,j) + w(i',j') <= w(i',j) + w(i,j'),i<=i'<j<=j'
時,稱w滿足四邊形不等式。
當函數w(i,j)滿足w(i',j)<=w(i,j'),i<=i'<j<=j'時,稱w關于區間包含關系單調。
對于滿足四邊形不等式的單調函數w,可推知由遞歸式定義的函數m(i,j)
也滿足四邊形不等式,即:
m(i,j) + m(i',j') <= m(i',j) + m(i,j'),i<=i'<j<=j'
這一性質可用數學歸納法證明。我們對四邊形不等式中的“長度”l=j'-i應用數學歸納法
當i==i'或j==j'時,不等式顯然成立。由此可知,當l<=1時,函數m滿足四邊形不等式。
下面分兩種情形進行歸納證明:
情形1:i<i' = j<j
*/
/*
加速算法:
根據前面的討論,當w是滿足四邊形不等式的單調函數時
,函數s(i,j)單調,從而:
min{i<k<=j}{m(i,k-1)+m(k,j)}
= min{s(i,j-1)<=k<=s(i+1,j)}{m(i,k-1)+m(k,j)}
*/
void SpeedDynamicProgramming( int n, int **m, int **s, int **w )
{
for( int i = 1; i <= n; ++i )
{
m[i][i] = 0;
s[i][i] = 0;
}
for( int r = 1; r < n; ++r )
{
for( int i = 1; i <= n - r; ++i )
{
int j = i + r;
int i1 = s[i][j-1] > i ? s[i][j-1] : i;
int j1 = s[i+1][j] > i ? s[i+1][j] : j - 1;
w[i][j] = weight(i,j);
m[i][j] = m[i][i1] + m[i1+1][j];
s[i][j] = i1;
for( int k = i1 + 1; k <= j1; ++k )
{
int t = m[i][k] + m[k+1][j];
if ( t <= m[i][j] )
{
m[i][j] = t;
s[i][j] = k;
}
m[i][j] += w[i][j];
}
}
}
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -