?? t1bv_25.c
字號(hào):
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:51:19 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 25 -name t1bv_25 -include t1b.h -sign 1 *//* * This function contains 248 FP additions, 241 FP multiplications, * (or, 67 additions, 60 multiplications, 181 fused multiply/add), * 208 stack variables, 67 constants, and 50 memory accesses */#include "t1b.h"static void t1bv_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){ DVK(KP792626838, +0.792626838241819413632131824093538848057784557); DVK(KP876091699, +0.876091699473550838204498029706869638173524346); DVK(KP617882369, +0.617882369114440893914546919006756321695042882); DVK(KP803003575, +0.803003575438660414833440593570376004635464850); DVK(KP242145790, +0.242145790282157779872542093866183953459003101); DVK(KP968583161, +0.968583161128631119490168375464735813836012403); DVK(KP999544308, +0.999544308746292983948881682379742149196758193); DVK(KP916574801, +0.916574801383451584742370439148878693530976769); DVK(KP904730450, +0.904730450839922351881287709692877908104763647); DVK(KP809385824, +0.809385824416008241660603814668679683846476688); DVK(KP447417479, +0.447417479732227551498980015410057305749330693); DVK(KP894834959, +0.894834959464455102997960030820114611498661386); DVK(KP867381224, +0.867381224396525206773171885031575671309956167); DVK(KP683113946, +0.683113946453479238701949862233725244439656928); DVK(KP559154169, +0.559154169276087864842202529084232643714075927); DVK(KP958953096, +0.958953096729998668045963838399037225970891871); DVK(KP831864738, +0.831864738706457140726048799369896829771167132); DVK(KP829049696, +0.829049696159252993975487806364305442437946767); DVK(KP860541664, +0.860541664367944677098261680920518816412804187); DVK(KP897376177, +0.897376177523557693138608077137219684419427330); DVK(KP876306680, +0.876306680043863587308115903922062583399064238); DVK(KP681693190, +0.681693190061530575150324149145440022633095390); DVK(KP560319534, +0.560319534973832390111614715371676131169633784); DVK(KP855719849, +0.855719849902058969314654733608091555096772472); DVK(KP237294955, +0.237294955877110315393888866460840817927895961); DVK(KP949179823, +0.949179823508441261575555465843363271711583843); DVK(KP904508497, +0.904508497187473712051146708591409529430077295); DVK(KP997675361, +0.997675361079556513670859573984492383596555031); DVK(KP763932022, +0.763932022500210303590826331268723764559381640); DVK(KP690983005, +0.690983005625052575897706582817180941139845410); DVK(KP992114701, +0.992114701314477831049793042785778521453036709); DVK(KP952936919, +0.952936919628306576880750665357914584765951388); DVK(KP998026728, +0.998026728428271561952336806863450553336905220); DVK(KP262346850, +0.262346850930607871785420028382979691334784273); DVK(KP570584518, +0.570584518783621657366766175430996792655723863); DVK(KP669429328, +0.669429328479476605641803240971985825917022098); DVK(KP923225144, +0.923225144846402650453449441572664695995209956); DVK(KP945422727, +0.945422727388575946270360266328811958657216298); DVK(KP522616830, +0.522616830205754336872861364785224694908468440); DVK(KP956723877, +0.956723877038460305821989399535483155872969262); DVK(KP906616052, +0.906616052148196230441134447086066874408359177); DVK(KP772036680, +0.772036680810363904029489473607579825330539880); DVK(KP845997307, +0.845997307939530944175097360758058292389769300); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP921078979, +0.921078979742360627699756128143719920817673854); DVK(KP912575812, +0.912575812670962425556968549836277086778922727); DVK(KP982009705, +0.982009705009746369461829878184175962711969869); DVK(KP734762448, +0.734762448793050413546343770063151342619912334); DVK(KP494780565, +0.494780565770515410344588413655324772219443730); DVK(KP447533225, +0.447533225982656890041886979663652563063114397); DVK(KP269969613, +0.269969613759572083574752974412347470060951301); DVK(KP244189809, +0.244189809627953270309879511234821255780225091); DVK(KP667278218, +0.667278218140296670899089292254759909713898805); DVK(KP603558818, +0.603558818296015001454675132653458027918768137); DVK(KP522847744, +0.522847744331509716623755382187077770911012542); DVK(KP578046249, +0.578046249379945007321754579646815604023525655); DVK(KP987388751, +0.987388751065621252324603216482382109400433949); DVK(KP893101515, +0.893101515366181661711202267938416198338079437); DVK(KP120146378, +0.120146378570687701782758537356596213647956445); DVK(KP132830569, +0.132830569247582714407653942074819768844536507); DVK(KP869845200, +0.869845200362138853122720822420327157933056305); DVK(KP786782374, +0.786782374965295178365099601674911834788448471); DVK(KP066152395, +0.066152395967733048213034281011006031460903353); DVK(KP059835404, +0.059835404262124915169548397419498386427871950); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; R *x; x = ii; for (m = mb, W = W + (mb * ((TWVL / VL) * 48)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 48), MAKE_VOLATILE_STRIDE(rs)) { V T25, T1B, T2y, T1K, T2s, T23, T1S, T26, T20, T1X; { V T1O, T2X, Te, T3L, Td, T3Q, T3j, T3b, T2R, T2M, T2f, T27, T1y, T1H, T3M; V TW, TR, TK, T2B, T3n, T3e, T2U, T2F, T2i, T2a, Tz, T1C, T3N, TQ, T11; V T1b, T1c, T16; { V T1, T1g, T1i, T1p, T1k, T1m, Tb, T1N, T6, T1M; { V T7, T9, T2, T4, T1f, T1h, T1o; T1 = LD(&(x[0]), ms, &(x[0])); T7 = LD(&(x[WS(rs, 10)]), ms, &(x[0])); T9 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)])); T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)])); T4 = LD(&(x[WS(rs, 20)]), ms, &(x[0])); T1f = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)])); T1h = LD(&(x[WS(rs, 8)]), ms, &(x[0])); T1o = LD(&(x[WS(rs, 18)]), ms, &(x[0])); { V T8, Ta, T3, T5, T1j; T1j = LD(&(x[WS(rs, 23)]), ms, &(x[WS(rs, 1)])); T8 = BYTW(&(W[TWVL * 18]), T7); Ta = BYTW(&(W[TWVL * 28]), T9); T3 = BYTW(&(W[TWVL * 8]), T2); T5 = BYTW(&(W[TWVL * 38]), T4); T1g = BYTW(&(W[TWVL * 4]), T1f); T1i = BYTW(&(W[TWVL * 14]), T1h); T1p = BYTW(&(W[TWVL * 34]), T1o); T1k = BYTW(&(W[TWVL * 44]), T1j); T1m = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)])); Tb = VADD(T8, Ta); T1N = VSUB(T8, Ta); T6 = VADD(T3, T5); T1M = VSUB(T3, T5); } } { V T1v, T1l, Th, Tj, T1w, T1q, Tq, Tk, Tn, Tg; Tg = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)])); { V Tc, Ti, T1n, Tp; Ti = LD(&(x[WS(rs, 6)]), ms, &(x[0])); T1v = VSUB(T1i, T1k); T1l = VADD(T1i, T1k); T1n = BYTW(&(W[TWVL * 24]), T1m); Tp = LD(&(x[WS(rs, 16)]), ms, &(x[0])); T1O = VFMA(LDK(KP618033988), T1N, T1M); T2X = VFNMS(LDK(KP618033988), T1M, T1N); Te = VSUB(T6, Tb); Tc = VADD(T6, Tb); Th = BYTW(&(W[0]), Tg); Tj = BYTW(&(W[TWVL * 10]), Ti); T1w = VSUB(T1n, T1p); T1q = VADD(T1n, T1p); Tq = BYTW(&(W[TWVL * 30]), Tp); Tk = LD(&(x[WS(rs, 21)]), ms, &(x[WS(rs, 1)])); T3L = VADD(T1, Tc); Td = VFNMS(LDK(KP250000000), Tc, T1); Tn = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)])); } { V T1x, T2K, TM, TB, Tw, Tm, Tx, Tr, TI, T2L, T1u, TD, TF, TL; TL = LD(&(x[WS(rs, 4)]), ms, &(x[0])); { V T1t, Tl, To, TH, T1s, T1r, TA, TC; TA = LD(&(x[WS(rs, 24)]), ms, &(x[0])); T1r = VADD(T1l, T1q); T1t = VSUB(T1q, T1l); T1x = VFMA(LDK(KP618033988), T1w, T1v); T2K = VFNMS(LDK(KP618033988), T1v, T1w); Tl = BYTW(&(W[TWVL * 40]), Tk); To = BYTW(&(W[TWVL * 20]), Tn); TM = BYTW(&(W[TWVL * 6]), TL); TB = BYTW(&(W[TWVL * 46]), TA); TH = LD(&(x[WS(rs, 14)]), ms, &(x[0])); T1s = VFNMS(LDK(KP250000000), T1r, T1g); T3Q = VADD(T1g, T1r); TC = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)])); Tw = VSUB(Tj, Tl); Tm = VADD(Tj, Tl); Tx = VSUB(Tq, To); Tr = VADD(To, Tq); TI = BYTW(&(W[TWVL * 26]), TH); T2L = VFMA(LDK(KP559016994), T1t, T1s); T1u = VFNMS(LDK(KP559016994), T1t, T1s); TD = BYTW(&(W[TWVL * 16]), TC); TF = LD(&(x[WS(rs, 19)]), ms, &(x[WS(rs, 1)])); } { V Tu, Ty, T2E, TE, TN, TG, Tt, TV, Ts; TV = LD(&(x[WS(rs, 2)]), ms, &(x[0])); Ts = VADD(Tm, Tr); Tu = VSUB(Tm, Tr); Ty = VFNMS(LDK(KP618033988), Tx, Tw); T2E = VFMA(LDK(KP618033988), Tw, Tx); T3j = VFNMS(LDK(KP059835404), T2K, T2L); T3b = VFMA(LDK(KP066152395), T2L, T2K); T2R = VFNMS(LDK(KP786782374), T2K, T2L); T2M = VFMA(LDK(KP869845200), T2L, T2K); T2f = VFMA(LDK(KP132830569), T1u, T1x); T27 = VFNMS(LDK(KP120146378), T1x, T1u); T1y = VFNMS(LDK(KP893101515), T1x, T1u); T1H = VFMA(LDK(KP987388751), T1u, T1x); TE = VSUB(TB, TD); TN = VADD(TD, TB); TG = BYTW(&(W[TWVL * 36]), TF); Tt = VFNMS(LDK(KP250000000), Ts, Th); T3M = VADD(Th, Ts); TW = BYTW(&(W[TWVL * 2]), TV); { V TJ, TO, Tv, T2D, TY, T15, T10, T13, TP; { V TX, T14, TZ, T12; TX = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)])); T14 = LD(&(x[WS(rs, 17)]), ms, &(x[WS(rs, 1)])); TZ = LD(&(x[WS(rs, 22)]), ms, &(x[0])); T12 = LD(&(x[WS(rs, 12)]), ms, &(x[0])); TJ = VSUB(TG, TI); TO = VADD(TI, TG); Tv = VFMA(LDK(KP559016994), Tu, Tt); T2D = VFNMS(LDK(KP559016994), Tu, Tt); TY = BYTW(&(W[TWVL * 12]), TX); T15 = BYTW(&(W[TWVL * 32]), T14); T10 = BYTW(&(W[TWVL * 42]), TZ); T13 = BYTW(&(W[TWVL * 22]), T12); } TP = VADD(TN, TO); TR = VSUB(TN, TO); TK = VFMA(LDK(KP618033988), TJ, TE); T2B = VFNMS(LDK(KP618033988), TE, TJ); T3n = VFMA(LDK(KP578046249), T2D, T2E); T3e = VFNMS(LDK(KP522847744), T2E, T2D); T2U = VFNMS(LDK(KP987388751), T2D, T2E); T2F = VFMA(LDK(KP893101515), T2E, T2D); T2i = VFNMS(LDK(KP603558818), Ty, Tv); T2a = VFMA(LDK(KP667278218), Tv, Ty); Tz = VFNMS(LDK(KP244189809), Ty, Tv); T1C = VFMA(LDK(KP269969613), Tv, Ty); T3N = VADD(TM, TP); TQ = VFMS(LDK(KP250000000), TP, TM); T11 = VADD(TY, T10); T1b = VSUB(TY, T10); T1c = VSUB(T15, T13); T16 = VADD(T13, T15); } } } } } { V T2z, Tf, T3W, T3O, T1d, T2H, T3m, T2j, T2b, TT, T1D, T2G, T35, T2V, T2Z; V T3A, T3g, T2I, T1a, T3R, T3X; T2z = VFNMS(LDK(KP559016994), Te, Td); Tf = VFMA(LDK(KP559016994), Te, Td); { V TS, T2A, T17, T19; TS = VFNMS(LDK(KP559016994), TR, TQ); T2A = VFMA(LDK(KP559016994), TR, TQ); T3W = VSUB(T3M, T3N); T3O = VADD(T3M, T3N); T1d = VFNMS(LDK(KP618033988), T1c, T1b); T2H = VFMA(LDK(KP618033988), T1b, T1c); T17 = VADD(T11, T16); T19 = VSUB(T16, T11); { V T3f, T2T, T2C, T18, T3P; T3m = VFMA(LDK(KP447533225), T2B, T2A); T3f = VFNMS(LDK(KP494780565), T2A, T2B); T2T = VFNMS(LDK(KP132830569), T2A, T2B); T2C = VFMA(LDK(KP120146378), T2B, T2A); T2j = VFNMS(LDK(KP786782374), TK, TS); T2b = VFMA(LDK(KP869845200), TS, TK); TT = VFNMS(LDK(KP667278218), TS, TK); T1D = VFMA(LDK(KP603558818), TK, TS); T18 = VFNMS(LDK(KP250000000), T17, TW); T3P = VADD(TW, T17); T2G = VFMA(LDK(KP734762448), T2F, T2C); T35 = VFNMS(LDK(KP734762448), T2F, T2C); T2V = VFNMS(LDK(KP734762448), T2U, T2T); T2Z = VFMA(LDK(KP734762448), T2U, T2T); T3A = VFMA(LDK(KP982009705), T3f, T3e); T3g = VFNMS(LDK(KP982009705), T3f, T3e); T2I = VFMA(LDK(KP559016994), T19, T18); T1a = VFNMS(LDK(KP559016994), T19, T18); T3R = VADD(T3P, T3Q); T3X = VSUB(T3P, T3Q); } } { V T2n, T2t, T1V, T22, T2l, T2d, T1Q, T1I, T2w, T1A, T1F, T2q; { V T2k, T1G, T28, T2g, T3K, T3E, T3a, T34, T3x, T3H, T2c, TU, T1T, T1U, T1z; V T3o, T3t; T2n = VFNMS(LDK(KP912575812), T2j, T2i); T2k = VFMA(LDK(KP912575812), T2j, T2i); T3o = VFNMS(LDK(KP921078979), T3n, T3m); T3t = VFMA(LDK(KP921078979), T3n, T3m); { V T3c, T2Q, T2J, T3k, T1e; T3c = VFNMS(LDK(KP667278218), T2I, T2H); T2Q = VFNMS(LDK(KP059835404), T2H, T2I); T2J = VFMA(LDK(KP066152395), T2I, T2H);
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -