?? n1fv_25.c
字號(hào):
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:43:57 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 25 -name n1fv_25 -include n1f.h *//* * This function contains 224 FP additions, 193 FP multiplications, * (or, 43 additions, 12 multiplications, 181 fused multiply/add), * 215 stack variables, 67 constants, and 50 memory accesses */#include "n1f.h"static void n1fv_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){ DVK(KP792626838, +0.792626838241819413632131824093538848057784557); DVK(KP876091699, +0.876091699473550838204498029706869638173524346); DVK(KP803003575, +0.803003575438660414833440593570376004635464850); DVK(KP617882369, +0.617882369114440893914546919006756321695042882); DVK(KP242145790, +0.242145790282157779872542093866183953459003101); DVK(KP968583161, +0.968583161128631119490168375464735813836012403); DVK(KP999544308, +0.999544308746292983948881682379742149196758193); DVK(KP683113946, +0.683113946453479238701949862233725244439656928); DVK(KP559154169, +0.559154169276087864842202529084232643714075927); DVK(KP904730450, +0.904730450839922351881287709692877908104763647); DVK(KP829049696, +0.829049696159252993975487806364305442437946767); DVK(KP831864738, +0.831864738706457140726048799369896829771167132); DVK(KP916574801, +0.916574801383451584742370439148878693530976769); DVK(KP894834959, +0.894834959464455102997960030820114611498661386); DVK(KP809385824, +0.809385824416008241660603814668679683846476688); DVK(KP447417479, +0.447417479732227551498980015410057305749330693); DVK(KP860541664, +0.860541664367944677098261680920518816412804187); DVK(KP897376177, +0.897376177523557693138608077137219684419427330); DVK(KP876306680, +0.876306680043863587308115903922062583399064238); DVK(KP681693190, +0.681693190061530575150324149145440022633095390); DVK(KP560319534, +0.560319534973832390111614715371676131169633784); DVK(KP855719849, +0.855719849902058969314654733608091555096772472); DVK(KP237294955, +0.237294955877110315393888866460840817927895961); DVK(KP949179823, +0.949179823508441261575555465843363271711583843); DVK(KP904508497, +0.904508497187473712051146708591409529430077295); DVK(KP997675361, +0.997675361079556513670859573984492383596555031); DVK(KP262346850, +0.262346850930607871785420028382979691334784273); DVK(KP763932022, +0.763932022500210303590826331268723764559381640); DVK(KP992114701, +0.992114701314477831049793042785778521453036709); DVK(KP690983005, +0.690983005625052575897706582817180941139845410); DVK(KP952936919, +0.952936919628306576880750665357914584765951388); DVK(KP998026728, +0.998026728428271561952336806863450553336905220); DVK(KP570584518, +0.570584518783621657366766175430996792655723863); DVK(KP669429328, +0.669429328479476605641803240971985825917022098); DVK(KP923225144, +0.923225144846402650453449441572664695995209956); DVK(KP906616052, +0.906616052148196230441134447086066874408359177); DVK(KP956723877, +0.956723877038460305821989399535483155872969262); DVK(KP522616830, +0.522616830205754336872861364785224694908468440); DVK(KP945422727, +0.945422727388575946270360266328811958657216298); DVK(KP912575812, +0.912575812670962425556968549836277086778922727); DVK(KP982009705, +0.982009705009746369461829878184175962711969869); DVK(KP921078979, +0.921078979742360627699756128143719920817673854); DVK(KP734762448, +0.734762448793050413546343770063151342619912334); DVK(KP951056516, +0.951056516295153572116439333379382143405698634); DVK(KP958953096, +0.958953096729998668045963838399037225970891871); DVK(KP867381224, +0.867381224396525206773171885031575671309956167); DVK(KP269969613, +0.269969613759572083574752974412347470060951301); DVK(KP244189809, +0.244189809627953270309879511234821255780225091); DVK(KP845997307, +0.845997307939530944175097360758058292389769300); DVK(KP772036680, +0.772036680810363904029489473607579825330539880); DVK(KP132830569, +0.132830569247582714407653942074819768844536507); DVK(KP120146378, +0.120146378570687701782758537356596213647956445); DVK(KP987388751, +0.987388751065621252324603216482382109400433949); DVK(KP893101515, +0.893101515366181661711202267938416198338079437); DVK(KP786782374, +0.786782374965295178365099601674911834788448471); DVK(KP869845200, +0.869845200362138853122720822420327157933056305); DVK(KP447533225, +0.447533225982656890041886979663652563063114397); DVK(KP494780565, +0.494780565770515410344588413655324772219443730); DVK(KP578046249, +0.578046249379945007321754579646815604023525655); DVK(KP522847744, +0.522847744331509716623755382187077770911012542); DVK(KP059835404, +0.059835404262124915169548397419498386427871950); DVK(KP066152395, +0.066152395967733048213034281011006031460903353); DVK(KP603558818, +0.603558818296015001454675132653458027918768137); DVK(KP667278218, +0.667278218140296670899089292254759909713898805); DVK(KP559016994, +0.559016994374947424102293417182819058860154590); DVK(KP250000000, +0.250000000000000000000000000000000000000000000); DVK(KP618033988, +0.618033988749894848204586834365638117720309180); INT i; const R *xi; R *xo; xi = ri; xo = ro; for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { V T1g, T1k, T1I, T24, T2a, T1G, T1A, T1l, T1B, T1H, T1d; { V T2z, T1q, Ta, T9, T3n, Ty, Tl, T2O, T2W, T2l, T2s, TV, T1i, T1K, T1S; V T3z, T3t, Tk, T3o, Tp, T2g, T2N, T2V, T2o, T2t, T1a, T1j, T1J, T1R, Tz; V Tt, TA, Tw; { V T1, T5, T6, T2, T3; T1 = LD(&(xi[0]), ivs, &(xi[0])); T5 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); T6 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)])); T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); T3 = LD(&(xi[WS(is, 20)]), ivs, &(xi[0])); { V TH, TW, TK, TS, T10, T8, TN, TT, T17, TZ, T11; TH = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); TW = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); { V TI, TJ, TL, T7, T1p, T4, T1o, TM, TX, TY; TI = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); TJ = LD(&(xi[WS(is, 22)]), ivs, &(xi[0])); TL = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); T7 = VADD(T5, T6); T1p = VSUB(T5, T6); T4 = VADD(T2, T3); T1o = VSUB(T2, T3); TM = LD(&(xi[WS(is, 17)]), ivs, &(xi[WS(is, 1)])); TX = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); TK = VADD(TI, TJ); TS = VSUB(TI, TJ); TY = LD(&(xi[WS(is, 23)]), ivs, &(xi[WS(is, 1)])); T10 = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)])); T2z = VFNMS(LDK(KP618033988), T1o, T1p); T1q = VFMA(LDK(KP618033988), T1p, T1o); Ta = VSUB(T4, T7); T8 = VADD(T4, T7); TN = VADD(TL, TM); TT = VSUB(TM, TL); T17 = VSUB(TX, TY); TZ = VADD(TX, TY); T11 = LD(&(xi[WS(is, 18)]), ivs, &(xi[0])); } { V Tc, T2m, T19, Tn, To, Tr, Tj, T16, T2n, Ts, Tu, Tv; { V TU, T2j, TO, TQ, T12, T18; Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); T9 = VFNMS(LDK(KP250000000), T8, T1); T3n = VADD(T1, T8); TU = VFNMS(LDK(KP618033988), TT, TS); T2j = VFMA(LDK(KP618033988), TS, TT); TO = VADD(TK, TN); TQ = VSUB(TN, TK); T12 = VADD(T10, T11); T18 = VSUB(T10, T11); Ty = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); { V T3r, T15, T13, Tf, Ti, T2k, TR, TP, T3s, T14; { V Td, Te, Tg, Th; Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); Te = LD(&(xi[WS(is, 21)]), ivs, &(xi[WS(is, 1)])); Tg = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); Th = LD(&(xi[WS(is, 16)]), ivs, &(xi[0])); TP = VFNMS(LDK(KP250000000), TO, TH); T3r = VADD(TH, TO); T2m = VFNMS(LDK(KP618033988), T17, T18); T19 = VFMA(LDK(KP618033988), T18, T17); T15 = VSUB(T12, TZ); T13 = VADD(TZ, T12); Tf = VADD(Td, Te); Tn = VSUB(Td, Te); To = VSUB(Th, Tg); Ti = VADD(Tg, Th); } T2k = VFMA(LDK(KP559016994), TQ, TP); TR = VFNMS(LDK(KP559016994), TQ, TP); Tr = LD(&(xi[WS(is, 24)]), ivs, &(xi[0])); T3s = VADD(TW, T13); T14 = VFNMS(LDK(KP250000000), T13, TW); Tj = VADD(Tf, Ti); Tl = VSUB(Tf, Ti); T2O = VFNMS(LDK(KP667278218), T2k, T2j); T2W = VFMA(LDK(KP603558818), T2j, T2k); T2l = VFMA(LDK(KP066152395), T2k, T2j); T2s = VFNMS(LDK(KP059835404), T2j, T2k); TV = VFNMS(LDK(KP522847744), TU, TR); T1i = VFMA(LDK(KP578046249), TR, TU); T1K = VFNMS(LDK(KP494780565), TR, TU); T1S = VFMA(LDK(KP447533225), TU, TR); T16 = VFNMS(LDK(KP559016994), T15, T14); T2n = VFMA(LDK(KP559016994), T15, T14); T3z = VSUB(T3r, T3s); T3t = VADD(T3r, T3s); Ts = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); Tu = LD(&(xi[WS(is, 19)]), ivs, &(xi[WS(is, 1)])); Tv = LD(&(xi[WS(is, 14)]), ivs, &(xi[0])); } } Tk = VFNMS(LDK(KP250000000), Tj, Tc); T3o = VADD(Tc, Tj); Tp = VFNMS(LDK(KP618033988), To, Tn); T2g = VFMA(LDK(KP618033988), Tn, To); T2N = VFMA(LDK(KP066152395), T2n, T2m); T2V = VFNMS(LDK(KP059835404), T2m, T2n); T2o = VFMA(LDK(KP869845200), T2n, T2m); T2t = VFNMS(LDK(KP786782374), T2m, T2n); T1a = VFNMS(LDK(KP893101515), T19, T16); T1j = VFMA(LDK(KP987388751), T16, T19); T1J = VFNMS(LDK(KP120146378), T19, T16); T1R = VFMA(LDK(KP132830569), T16, T19); Tz = VADD(Ts, Tr); Tt = VSUB(Tr, Ts); TA = VADD(Tv, Tu); Tw = VSUB(Tu, Tv); } } } { V T2p, T2I, T2u, T2C, Tx, T2d, T2X, T34, T2P, T3b, T2b, Tb, T2Q, T2Z, T2h; V T2w, Tq, T1e, T1M, T1U, TE, T2c, T3q, T3y; T2p = VFNMS(LDK(KP772036680), T2o, T2l); T2I = VFMA(LDK(KP772036680), T2o, T2l); T2u = VFMA(LDK(KP772036680), T2t, T2s); T2C = VFNMS(LDK(KP772036680), T2t, T2s); { V TD, TB, Tm, T2f, T3p, TC; Tx = VFMA(LDK(KP618033988), Tw, Tt); T2d = VFNMS(LDK(KP618033988), Tt, Tw); TD = VSUB(Tz, TA); TB = VADD(Tz, TA); Tm = VFMA(LDK(KP559016994), Tl, Tk); T2f = VFNMS(LDK(KP559016994), Tl, Tk); T2X = VFMA(LDK(KP845997307), T2W, T2V); T34 = VFNMS(LDK(KP845997307), T2W, T2V); T2P = VFNMS(LDK(KP845997307), T2O, T2N); T3b = VFMA(LDK(KP845997307), T2O, T2N); T2b = VFNMS(LDK(KP559016994), Ta, T9); Tb = VFMA(LDK(KP559016994), Ta, T9); T3p = VADD(Ty, TB); TC = VFMS(LDK(KP250000000), TB, Ty); T2Q = VFNMS(LDK(KP522847744), T2g, T2f); T2Z = VFMA(LDK(KP578046249), T2f, T2g); T2h = VFMA(LDK(KP893101515), T2g, T2f); T2w = VFNMS(LDK(KP987388751), T2f, T2g); Tq = VFNMS(LDK(KP244189809), Tp, Tm); T1e = VFMA(LDK(KP269969613), Tm, Tp); T1M = VFMA(LDK(KP667278218), Tm, Tp); T1U = VFNMS(LDK(KP603558818), Tp, Tm); TE = VFNMS(LDK(KP559016994), TD, TC); T2c = VFMA(LDK(KP559016994), TD, TC); T3q = VADD(T3o, T3p);
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -