?? hc2cbdft2_20.c
字號:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:12:30 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft2_20 -include hc2cb.h *//* * This function contains 286 FP additions, 148 FP multiplications, * (or, 176 additions, 38 multiplications, 110 fused multiply/add), * 122 stack variables, 4 constants, and 80 memory accesses */#include "hc2cb.h"static void hc2cbdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) { E T5s, T5v, T5t, T5z, T5q, T5y, T5u, T5A, T5w; { E T3T, T27, T2o, T41, T2p, T40, TU, T15, T2Q, T1N, T2L, T1w, T59, T4n, T5e; E T4A, T2m, T24, T2Z, T2h, T4J, T3P, T3Y, T3W, T2d, TJ, T3H, T2c, TD, T52; E T3G, T1E, T4f, T5I, T4e, T4w, T5L, T4v, T1J, T1H; { E T1A, T3, T25, TI, TF, T6, T26, T1D, TO, T47, T3z, Te, T1S, T3M, T1e; E T4k, TZ, T4a, T3C, Tt, T1Z, T3J, T1p, T4h, T14, T4b, T3D, TA, T22, T3K; E T1u, T4i, Ti, T1f, Th, T1T, TS, Tj, T1g, T1h; { E T4, T5, T1B, T1C; { E T1, T2, TG, TH; T1 = Rp[0]; T2 = Rm[WS(rs, 9)]; TG = Ip[0]; TH = Im[WS(rs, 9)]; T4 = Rp[WS(rs, 5)]; T1A = T1 - T2; T3 = T1 + T2; T25 = TG - TH; TI = TG + TH; T5 = Rm[WS(rs, 4)]; T1B = Ip[WS(rs, 5)]; T1C = Im[WS(rs, 4)]; } { E Tq, T1l, Tp, T1X, TY, Tr, T1m, T1n; { E Tb, T1a, Ta, T1Q, TN, Tc, T1b, T1c; { E T8, T9, TL, TM; T8 = Rp[WS(rs, 4)]; TF = T4 - T5; T6 = T4 + T5; T26 = T1B - T1C; T1D = T1B + T1C; T9 = Rm[WS(rs, 5)]; TL = Ip[WS(rs, 4)]; TM = Im[WS(rs, 5)]; Tb = Rp[WS(rs, 9)]; T1a = T8 - T9; Ta = T8 + T9; T1Q = TL - TM; TN = TL + TM; Tc = Rm[0]; T1b = Ip[WS(rs, 9)]; T1c = Im[0]; } { E Tn, To, TW, TX; Tn = Rp[WS(rs, 8)]; { E TK, Td, T1R, T1d; TK = Tb - Tc; Td = Tb + Tc; T1R = T1b - T1c; T1d = T1b + T1c; TO = TK + TN; T47 = TN - TK; T3z = Ta - Td; Te = Ta + Td; T1S = T1Q + T1R; T3M = T1Q - T1R; T1e = T1a - T1d; T4k = T1a + T1d; To = Rm[WS(rs, 1)]; } TW = Ip[WS(rs, 8)]; TX = Im[WS(rs, 1)]; Tq = Rm[WS(rs, 6)]; T1l = Tn - To; Tp = Tn + To; T1X = TW - TX; TY = TW + TX; Tr = Rp[WS(rs, 3)]; T1m = Im[WS(rs, 6)]; T1n = Ip[WS(rs, 3)]; } } { E Tx, T1q, Tw, T20, T13, Ty, T1r, T1s; { E Tu, Tv, T11, T12; Tu = Rm[WS(rs, 7)]; { E TV, Ts, T1Y, T1o; TV = Tq - Tr; Ts = Tq + Tr; T1Y = T1n - T1m; T1o = T1m + T1n; TZ = TV + TY; T4a = TY - TV; T3C = Tp - Ts; Tt = Tp + Ts; T1Z = T1X + T1Y; T3J = T1X - T1Y; T1p = T1l + T1o; T4h = T1l - T1o; Tv = Rp[WS(rs, 2)]; } T11 = Im[WS(rs, 7)]; T12 = Ip[WS(rs, 2)]; Tx = Rm[WS(rs, 2)]; T1q = Tu - Tv; Tw = Tu + Tv; T20 = T12 - T11; T13 = T11 + T12; Ty = Rp[WS(rs, 7)]; T1r = Im[WS(rs, 2)]; T1s = Ip[WS(rs, 7)]; } { E Tf, Tg, TQ, TR; Tf = Rm[WS(rs, 3)]; { E T10, Tz, T21, T1t; T10 = Tx - Ty; Tz = Tx + Ty; T21 = T1s - T1r; T1t = T1r + T1s; T14 = T10 - T13; T4b = T10 + T13; T3D = Tw - Tz; TA = Tw + Tz; T22 = T20 + T21; T3K = T20 - T21; T1u = T1q + T1t; T4i = T1q - T1t; Tg = Rp[WS(rs, 6)]; } TQ = Im[WS(rs, 3)]; TR = Ip[WS(rs, 6)]; Ti = Rp[WS(rs, 1)]; T1f = Tf - Tg; Th = Tf + Tg; T1T = TR - TQ; TS = TQ + TR; Tj = Rm[WS(rs, 8)]; T1g = Ip[WS(rs, 1)]; T1h = Im[WS(rs, 8)]; } } } } { E T1V, T3N, TB, T3B, Tm, T3E, T1F, T1G, T4t, T4j, T4m, T4s, T4c, T4y, T4z; E T49, T3y, T7; { E TT, T48, T1j, T4l, T3A, Tl; T3T = T25 - T26; T27 = T25 + T26; { E TP, Tk, T1U, T1i; TP = Ti - Tj; Tk = Ti + Tj; T1U = T1g - T1h; T1i = T1g + T1h; TT = TP - TS; T48 = TP + TS; T3A = Th - Tk; Tl = Th + Tk; T1V = T1T + T1U; T3N = T1T - T1U; T1j = T1f - T1i; T4l = T1f + T1i; T2o = Tt - TA; TB = Tt + TA; } T41 = T3z - T3A; T3B = T3z + T3A; Tm = Te + Tl; T2p = Te - Tl; { E T1L, T1M, T1k, T1v; T40 = T3C - T3D; T3E = T3C + T3D; TU = TO + TT; T1L = TO - TT; T1M = TZ - T14; T15 = TZ + T14; T1F = T1e + T1j; T1k = T1e - T1j; T1v = T1p - T1u; T1G = T1p + T1u; T4t = T4h + T4i; T4j = T4h - T4i; T2Q = FNMS(KP618033988, T1L, T1M); T1N = FMA(KP618033988, T1M, T1L); T2L = FNMS(KP618033988, T1k, T1v); T1w = FMA(KP618033988, T1v, T1k); T4m = T4k - T4l; T4s = T4k + T4l; T4c = T4a - T4b; T4y = T4a + T4b; T4z = T47 + T48; T49 = T47 - T48; } } { E T2g, T1W, T23, T2f; T2g = T1S - T1V; T1W = T1S + T1V; T59 = FMA(KP618033988, T4j, T4m); T4n = FNMS(KP618033988, T4m, T4j); T5e = FMA(KP618033988, T4y, T4z); T4A = FNMS(KP618033988, T4z, T4y); T23 = T1Z + T22; T2f = T1Z - T22; { E T3V, T3L, T3O, T3U; T3V = T3J + T3K; T3L = T3J - T3K; T2m = T1W - T23; T24 = T1W + T23; T2Z = FMA(KP618033988, T2f, T2g); T2h = FNMS(KP618033988, T2g, T2f); T3O = T3M - T3N; T3U = T3M + T3N; T3y = T3 - T6; T7 = T3 + T6; T4J = FMA(KP618033988, T3L, T3O); T3P = FNMS(KP618033988, T3O, T3L); T3Y = T3U - T3V; T3W = T3U + T3V; } } { E T46, TC, T3F, T4r, T4d, T4u; TC = Tm + TB; T2d = Tm - TB; TJ = TF + TI; T46 = TI - TF; T3H = T3B - T3E; T3F = T3B + T3E; T2c = FNMS(KP250000000, TC, T7); TD = T7 + TC; T52 = T3y + T3F; T3G = FNMS(KP250000000, T3F, T3y); T4r = T1A + T1D; T1E = T1A - T1D; T4f = T49 - T4c; T4d = T49 + T4c; T5I = T46 + T4d; T4e = FNMS(KP250000000, T4d, T46); T4w = T4s - T4t; T4u = T4s + T4t; T5L = T4u + T4r; T4v = FNMS(KP250000000, T4u, T4r); T1J = T1F - T1G; T1H = T1F + T1G; } } } { E T38, T3b, T39, T3f, T36, T3e, T3a; { E T28, T3r, T3o, T3v, T3p, T2b, T2k, T35, T3l, T2H, T2r, T2j, T2z, T2D, T2G; E T2X, T2F, T2T, T32, T3h, T3k, T31, T3d, T3j, T3t, T1x, T2u, T1O, T2x, T2v; E T1y, T2B, T29, T2J, T2M, T2R, T2N, T2V; { E T2l, T1I, T18, T2q, T34, T17, T16, T3n; T28 = T24 + T27; T2l = FNMS(KP250000000, T24, T27); T3r = T1H + T1E; T1I = FNMS(KP250000000, T1H, T1E); T18 = TU - T15; T16 = TU + T15; T3n = W[8]; T2q = FNMS(KP618033988, T2p, T2o); T34 = FMA(KP618033988, T2o, T2p); T17 = FNMS(KP250000000, T16, TJ); T3o = TJ + T16; T3v = T3n * T3r; T3p = T3n * T3o; { E T2Y, T2E, T3i, T30; { E T2e, T33, T2n, T2i; T2Y = FMA(KP559016994, T2d, T2c); T2e = FNMS(KP559016994, T2d, T2c); T2b = W[14]; T2k = W[15]; T33 = FMA(KP559016994, T2m, T2l); T2n = FNMS(KP559016994, T2m, T2l); T2E = FMA(KP951056516, T2h, T2e); T2i = FNMS(KP951056516, T2h, T2e); T35 = FMA(KP951056516, T34, T33); T3l = FNMS(KP951056516, T34, T33); T2H = FNMS(KP951056516, T2q, T2n); T2r = FMA(KP951056516, T2q, T2n); T2j = T2b * T2i; T2z = T2k * T2i; T2D = W[22]; T2G = W[23]; } T2X = W[30]; T2F = T2D * T2E; T2T = T2G * T2E; T3i = FMA(KP951056516, T2Z, T2Y); T30 = FNMS(KP951056516, T2Z, T2Y); T32 = W[31]; T3h = W[6]; T3k = W[7]; T31 = T2X * T30; T3d = T32 * T30; T3j = T3h * T3i; T3t = T3k * T3i; } { E T2K, T2P, TE, T19, T1K, T2t, T37; T2K = FNMS(KP559016994, T18, T17); T19 = FMA(KP559016994, T18, T17); T1K = FMA(KP559016994, T1J, T1I); T2P = FNMS(KP559016994, T1J, T1I); TE = W[0]; T2t = W[16]; T1x = FMA(KP951056516, T1w, T19); T2u = FNMS(KP951056516, T1w, T19); T1O = FNMS(KP951056516, T1N, T1K); T2x = FMA(KP951056516, T1N, T1K); T2v = T2t * T2u; T1y = TE * T1x; T2B = T2t * T2x; T29 = TE * T1O; T2J = W[24]; T37 = W[32]; T2M = FMA(KP951056516, T2L, T2K); T38 = FNMS(KP951056516, T2L, T2K); T2R = FNMS(KP951056516, T2Q, T2P); T3b = FMA(KP951056516, T2Q, T2P); T39 = T37 * T38; T2N = T2J * T2M; T3f = T37 * T3b; } } T2V = T2J * T2R; { E T3m, T3u, T3q, T2a, T1P, T1z; T1z = W[1]; T3m = FNMS(T3k, T3l, T3j); T3u = FMA(T3h, T3l, T3t); T3q = W[9]; T2a = FNMS(T1z, T1x, T29); T1P = FMA(T1z, T1O, T1y); { E T2s, T2A, T2w, T3w, T3s; T2s = FNMS(T2k, T2r, T2j); T3w = FNMS(T3q, T3o, T3v); T3s = FMA(T3q, T3r, T3p); Im[0] = T2a - T28; Ip[0] = T28 + T2a; Rm[0] = TD + T1P; Rp[0] = TD - T1P; Im[WS(rs, 2)] = T3w - T3u; Ip[WS(rs, 2)] = T3u + T3w; Rm[WS(rs, 2)] = T3m + T3s; Rp[WS(rs, 2)] = T3m - T3s; T2A = FMA(T2b, T2r, T2z); T2w = W[17]; { E T2I, T2U, T2O, T2C, T2y, T2W, T2S; T2I = FNMS(T2G, T2H, T2F); T2U = FMA(T2D, T2H, T2T); T2O = W[25]; T2C = FNMS(T2w, T2u, T2B); T2y = FMA(T2w, T2x, T2v); T36 = FNMS(T32, T35, T31); T2W = FNMS(T2O, T2M, T2V); T2S = FMA(T2O, T2R, T2N); Im[WS(rs, 4)] = T2C - T2A; Ip[WS(rs, 4)] = T2A + T2C; Rm[WS(rs, 4)] = T2s + T2y; Rp[WS(rs, 4)] = T2s - T2y; Im[WS(rs, 6)] = T2W - T2U; Ip[WS(rs, 6)] = T2U + T2W; Rm[WS(rs, 6)] = T2I + T2S; Rp[WS(rs, 6)] = T2I - T2S; T3e = FMA(T2X, T35, T3d); T3a = W[33]; } } } } { E T55, T51, T54, T53, T5h, T5P, T5J, T3x, T4P, T5F, T5p, T43, T3R, T3S, T5l; E T5o, T4D, T5n, T5x, T4H, T4M, T5B, T5E, T4L, T4X, T5D, T5N, T4S, T4o, T4V; E T4B, T4T, T4p, T4Z, T4F, T57, T5a, T5f, T5b, T5j; { E T3X, T4O, T42, T3g, T3c, T5H; T55 = T3W + T3T; T3X = FNMS(KP250000000, T3W, T3T); T51 = W[18]; T3g = FNMS(T3a, T38, T3f); T3c = FMA(T3a, T3b, T39); T54 = W[19]; T53 = T51 * T52; Im[WS(rs, 8)] = T3g - T3e; Ip[WS(rs, 8)] = T3e + T3g; Rm[WS(rs, 8)] = T36 + T3c; Rp[WS(rs, 8)] = T36 - T3c; T5h = T54 * T52; T5H = W[28]; T4O = FMA(KP618033988, T40, T41); T42 = FNMS(KP618033988, T41, T40); T5P = T5H * T5L; T5J = T5H * T5I; { E T4I, T5m, T3Q, T3I, T3Z, T4N, T4K, T5C; T3I = FNMS(KP559016994, T3H, T3G); T4I = FMA(KP559016994, T3H, T3G); T3Z = FNMS(KP559016994, T3Y, T3X); T4N = FMA(KP559016994, T3Y, T3X); T3x = W[2]; T5m = FNMS(KP951056516, T3P, T3I); T3Q = FMA(KP951056516, T3P, T3I); T4P = FMA(KP951056516, T4O, T4N); T5F = FNMS(KP951056516, T4O, T4N); T5p = FMA(KP951056516, T42, T3Z); T43 = FNMS(KP951056516, T42, T3Z); T3R = T3x * T3Q; T3S = W[3]; T5l = W[34]; T5o = W[35]; T4D = T3S * T3Q; T5n = T5l * T5m; T5x = T5o * T5m; T4K = FNMS(KP951056516, T4J, T4I); T5C = FMA(KP951056516, T4J, T4I); T4H = W[10]; T4M = W[11]; T5B = W[26]; T5E = W[27]; T4L = T4H * T4K; T4X = T4M * T4K; T5D = T5B * T5C; T5N = T5E * T5C; } { E T58, T5d, T45, T4g, T4x, T4R, T5r; T4g = FNMS(KP559016994, T4f, T4e); T58 = FMA(KP559016994, T4f, T4e); T5d = FMA(KP559016994, T4w, T4v); T4x = FNMS(KP559016994, T4w, T4v); T45 = W[4]; T4R = W[12]; T4S = FNMS(KP951056516, T4n, T4g); T4o = FMA(KP951056516, T4n, T4g); T4V = FMA(KP951056516, T4A, T4x); T4B = FNMS(KP951056516, T4A, T4x); T4T = T4R * T4S; T4p = T45 * T4o; T4Z = T4R * T4V; T4F = T45 * T4B; T57 = W[20]; T5r = W[36]; T5s = FNMS(KP951056516, T59, T58); T5a = FMA(KP951056516, T59, T58); T5v = FMA(KP951056516, T5e, T5d); T5f = FNMS(KP951056516, T5e, T5d); T5t = T5r * T5s; T5b = T57 * T5a; T5z = T5r * T5v; } } T5j = T57 * T5f; { E T44, T4E, T5G, T5O, T5K, T4G, T4C, T4q; T44 = FNMS(T3S, T43, T3R); T4E = FMA(T3x, T43, T4D); T4q = W[5]; T5G = FNMS(T5E, T5F, T5D); T5O = FMA(T5B, T5F, T5N); T5K = W[29]; T4G = FNMS(T4q, T4o, T4F); T4C = FMA(T4q, T4B, T4p); { E T4Q, T4Y, T4U, T5Q, T5M; T4Q = FNMS(T4M, T4P, T4L); T5Q = FNMS(T5K, T5I, T5P); T5M = FMA(T5K, T5L, T5J); Im[WS(rs, 1)] = T4G - T4E; Ip[WS(rs, 1)] = T4E + T4G; Rm[WS(rs, 1)] = T44 + T4C; Rp[WS(rs, 1)] = T44 - T4C; Im[WS(rs, 7)] = T5Q - T5O; Ip[WS(rs, 7)] = T5O + T5Q; Rm[WS(rs, 7)] = T5G + T5M; Rp[WS(rs, 7)] = T5G - T5M; T4Y = FMA(T4H, T4P, T4X); T4U = W[13]; { E T56, T5i, T5c, T50, T4W, T5k, T5g; T56 = FNMS(T54, T55, T53); T5i = FMA(T51, T55, T5h); T5c = W[21]; T50 = FNMS(T4U, T4S, T4Z); T4W = FMA(T4U, T4V, T4T); T5q = FNMS(T5o, T5p, T5n); T5k = FNMS(T5c, T5a, T5j); T5g = FMA(T5c, T5f, T5b); Im[WS(rs, 3)] = T50 - T4Y; Ip[WS(rs, 3)] = T4Y + T50; Rm[WS(rs, 3)] = T4Q + T4W; Rp[WS(rs, 3)] = T4Q - T4W; Im[WS(rs, 5)] = T5k - T5i; Ip[WS(rs, 5)] = T5i + T5k; Rm[WS(rs, 5)] = T56 + T5g; Rp[WS(rs, 5)] = T56 - T5g; T5y = FMA(T5l, T5p, T5x); T5u = W[37]; } } } } } } T5A = FNMS(T5u, T5s, T5z); T5w = FMA(T5u, T5v, T5t); Im[WS(rs, 9)] = T5A - T5y; Ip[WS(rs, 9)] = T5y + T5A; Rm[WS(rs, 9)] = T5q + T5w;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -