?? hb2_20.c
字號(hào):
E T28, T22, T2m, T2i; T28 = T24 * T21; T22 = T1Y * T21; T2m = T2k * T2h; T2i = T2g * T2h; { E T1U, T1Q, T1K, T1q; T1U = T1S * T1P; T1Q = T1O * T1P; T1K = T1s * T1p; T1q = TI * T1p; ci[WS(rs, 6)] = FMA(T1Y, T27, T28); cr[WS(rs, 6)] = FNMS(T24, T27, T22); ci[WS(rs, 14)] = FMA(T2g, T2l, T2m); cr[WS(rs, 14)] = FNMS(T2k, T2l, T2i); ci[WS(rs, 18)] = FMA(T1O, T1T, T1U); cr[WS(rs, 18)] = FNMS(T1S, T1T, T1Q); ci[WS(rs, 2)] = FMA(TI, T1J, T1K); cr[WS(rs, 2)] = FNMS(T1s, T1J, T1q); } } } } }}static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, {136, 58, 140, 0} };void X(codelet_hb2_20) (planner *p) { X(khc2hc_register) (p, hb2_20, &desc);}#else /* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include hb.h *//* * This function contains 276 FP additions, 164 FP multiplications, * (or, 204 additions, 92 multiplications, 72 fused multiply/add), * 137 stack variables, 4 constants, and 80 memory accesses */#include "hb.h"static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) { E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X; E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d; E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L; { E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h; { E TF, T1s, TI, T1r; TD = W[0]; TG = W[1]; TE = W[2]; TH = W[3]; TF = TD * TE; T1s = TG * TE; TI = TG * TH; T1r = TD * TH; TJ = TF + TI; T1t = T1r - T1s; T27 = T1r + T1s; T25 = TF - TI; T1T = W[5]; T1U = TH * T1T; T2l = TD * T1T; T1Z = TE * T1T; T2i = TG * T1T; T1R = W[4]; T1S = TE * T1R; T2m = TG * T1R; T20 = TH * T1R; T2h = TD * T1R; } T1V = T1S + T1U; T2j = T2h - T2i; T2Z = T1Z + T20; T21 = T1Z - T20; T2X = T1S - T1U; T2T = T2l - T2m; T2n = T2l + T2m; T2P = T2h + T2i; { E T3T, T3U, T3P, T3Q; T3T = TJ * T1T; T3U = T1t * T1R; T3V = T3T - T3U; T41 = T3T + T3U; T3P = TJ * T1R; T3Q = T1t * T1T; T3R = T3P + T3Q; T3X = T3P - T3Q; { E T26, T28, T2a, T2b; T26 = T25 * T1R; T28 = T27 * T1T; T29 = T26 + T28; T2a = T25 * T1T; T2b = T27 * T1R; T2c = T2a - T2b; T4H = T26 - T28; T4L = T2a + T2b; T1L = W[6]; T1M = W[7]; T1N = FMA(TD, T1L, TG * T1M); T2d = FMA(T29, T1L, T2c * T1M); T4R = FNMS(T1t, T1L, TJ * T1M); T1P = FNMS(TG, T1L, TD * T1M); T4P = FMA(TJ, T1L, T1t * T1M); T49 = FNMS(T27, T1L, T25 * T1M); T2N = FNMS(TH, T1L, TE * T1M); T2f = FNMS(T2c, T1L, T29 * T1M); T47 = FMA(T25, T1L, T27 * T1M); T2L = FMA(TE, T1L, TH * T1M); } } } { E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B; E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC; E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H; E TN, TQ, TR, T48, T4a; { E T3, T3g, T1C, T3h, T6, T3D, T1z, T3C; { E T1, T2, T1A, T1B; T1 = cr[0]; T2 = ci[WS(rs, 9)]; T3 = T1 + T2; T3g = T1 - T2; T1A = ci[WS(rs, 14)]; T1B = cr[WS(rs, 15)]; T1C = T1A - T1B; T3h = T1A + T1B; } { E T4, T5, T1x, T1y; T4 = cr[WS(rs, 5)]; T5 = ci[WS(rs, 4)]; T6 = T4 + T5; T3D = T4 - T5; T1x = ci[WS(rs, 19)]; T1y = cr[WS(rs, 10)]; T1z = T1x - T1y; T3C = T1x + T1y; } T7 = T3 + T6; T4i = T3g - T3h; T4x = T3D + T3C; TK = T3 - T6; T1D = T1z - T1C; T3i = T3g + T3h; T3E = T3C - T3D; T2D = T1z + T1C; } { E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v; E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a; E T3s, T2v; { E Ta, T3j, T10, T3k, Td, T32, TX, T31; { E T8, T9, TY, TZ; T8 = cr[WS(rs, 4)]; T9 = ci[WS(rs, 5)]; Ta = T8 + T9; T3j = T8 - T9; TY = ci[WS(rs, 10)]; TZ = cr[WS(rs, 19)]; T10 = TY - TZ; T3k = TY + TZ; } { E Tb, Tc, TV, TW; Tb = cr[WS(rs, 9)]; Tc = ci[0]; Td = Tb + Tc; T32 = Tb - Tc; TV = ci[WS(rs, 15)]; TW = cr[WS(rs, 14)]; TX = TV - TW; T31 = TV + TW; } Te = Ta + Td; T4b = T3j - T3k; T4m = T32 + T31; TL = Ta - Td; T11 = TX - T10; T33 = T31 - T32; T3l = T3j + T3k; T2s = TX + T10; } { E Tw, T3t, Tz, T3b, T1j, T3c, T1m, T3u; { E Tu, Tv, Tx, Ty; Tu = ci[WS(rs, 7)]; Tv = cr[WS(rs, 2)]; Tw = Tu + Tv; T3t = Tu - Tv; Tx = ci[WS(rs, 2)]; Ty = cr[WS(rs, 7)]; Tz = Tx + Ty; T3b = Tx - Ty; } { E T1h, T1i, T1k, T1l; T1h = ci[WS(rs, 17)]; T1i = cr[WS(rs, 12)]; T1j = T1h - T1i; T3c = T1h + T1i; T1k = ci[WS(rs, 12)]; T1l = cr[WS(rs, 17)]; T1m = T1k - T1l; T3u = T1k + T1l; } TA = Tw + Tz; T4f = T3t + T3u; T4q = T3b - T3c; TP = Tw - Tz; T1n = T1j - T1m; T3d = T3b + T3c; T3v = T3t - T3u; T2w = T1j + T1m; } { E Th, T3m, T17, T3n, Tk, T34, T14, T35; { E Tf, Tg, T15, T16; Tf = ci[WS(rs, 3)]; Tg = cr[WS(rs, 6)]; Th = Tf + Tg; T3m = Tf - Tg; T15 = ci[WS(rs, 18)]; T16 = cr[WS(rs, 11)]; T17 = T15 - T16; T3n = T15 + T16; } { E Ti, Tj, T12, T13; Ti = cr[WS(rs, 1)]; Tj = ci[WS(rs, 8)]; Tk = Ti + Tj; T34 = Ti - Tj; T12 = ci[WS(rs, 13)]; T13 = cr[WS(rs, 16)]; T14 = T12 - T13; T35 = T12 + T13; } Tl = Th + Tk; T4c = T3m - T3n; T4n = T34 - T35; TM = Th - Tk; T18 = T14 - T17; T36 = T34 + T35; T3o = T3m + T3n; T2t = T14 + T17; } { E Tp, T3q, T1f, T3r, Ts, T39, T1c, T38; { E Tn, To, T1d, T1e; Tn = cr[WS(rs, 8)]; To = ci[WS(rs, 1)]; Tp = Tn + To; T3q = Tn - To; T1d = ci[WS(rs, 16)]; T1e = cr[WS(rs, 13)]; T1f = T1d - T1e; T3r = T1d + T1e; } { E Tq, Tr, T1a, T1b; Tq = ci[WS(rs, 6)]; Tr = cr[WS(rs, 3)]; Ts = Tq + Tr; T39 = Tq - Tr; T1a = ci[WS(rs, 11)]; T1b = cr[WS(rs, 18)]; T1c = T1a - T1b; T38 = T1a + T1b; } Tt = Tp + Ts; T4e = T3q + T3r; T4p = T39 + T38; TO = Tp - Ts; T1g = T1c - T1f; T3a = T38 - T39; T3s = T3q - T3r; T2v = T1c + T1f; } T19 = T11 - T18; T3L = T3l - T3o; T3M = T3s - T3v; T1o = T1g - T1n; T2x = T2v - T2w; T4C = T4e - T4f; T4B = T4b - T4c; T2u = T2s - T2t; T1v = TO - TP; T4r = T4p - T4q; T4o = T4m - T4n; T1u = TL - TM; T2H = Te - Tl; T37 = T33 + T36; T2I = Tt - TA; T3e = T3a + T3d; T3p = T3l + T3o; T3w = T3s + T3v; T3x = T3p + T3w; Tm = Te + Tl; TB = Tt + TA; TC = Tm + TB; T4u = T4m + T4n; T4v = T4p + T4q; T4y = T4u + T4v; T2A = T2s + T2t; T2B = T2v + T2w; T2E = T2A + T2B; T1E = T11 + T18; T1F = T1g + T1n; T1G = T1E + T1F; T4d = T4b + T4c; T4g = T4e + T4f; T4j = T4d + T4g; T3F = T33 - T36; T3G = T3a - T3d; T3H = T3F + T3G; TN = TL + TM; TQ = TO + TP; TR = TN + TQ; } cr[0] = T7 + TC; ci[0] = T2D + T2E; { E T2k, T2o, T4T, T4U; T2k = TK + TR; T2o = T1D + T1G; cr[WS(rs, 10)] = FNMS(T2n, T2o, T2j * T2k); ci[WS(rs, 10)] = FMA(T2n, T2k, T2j * T2o); T4T = T4i + T4j; T4U = T4x + T4y; cr[WS(rs, 5)] = FNMS(T2c, T4U, T29 * T4T); ci[WS(rs, 5)] = FMA(T29, T4U, T2c * T4T); } T48 = T3i + T3x; T4a = T3E + T3H; cr[WS(rs, 15)] = FNMS(T49, T4a, T47 * T48); ci[WS(rs, 15)] = FMA(T47, T4a, T49 * T48); { E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q; T2y = FMA(KP951056516, T2u, KP587785252 * T2x); T2J = FMA(KP951056516, T2H, KP587785252 * T2I); T2V = FNMS(KP951056516, T2I, KP587785252 * T2H); T2R = FNMS(KP951056516, T2x, KP587785252 * T2u); { E T2C, T2F, T2p, T2q; T2C = KP559016994 * (T2A - T2B); T2F = FNMS(KP250000000, T2E, T2D); T2G = T2C + T2F; T2U = T2F - T2C; T2p = KP559016994 * (Tm - TB); T2q = FNMS(KP250000000, TC, T7); T2r = T2p + T2q; T2Q = T2q - T2p; } { E T2z, T2K, T2Y, T30; T2z = T2r + T2y; T2K = T2G - T2J; cr[WS(rs, 4)] = FNMS(T27, T2K, T25 * T2z); ci[WS(rs, 4)] = FMA(T27, T2z, T25 * T2K); T2Y = T2Q - T2R; T30 = T2V + T2U; cr[WS(rs, 12)] = FNMS(T2Z, T30, T2X * T2Y); ci[WS(rs, 12)] = FMA(T2Z, T2Y, T2X * T30); } { E T2M, T2O, T2S, T2W; T2M = T2r - T2y; T2O = T2J + T2G; cr[WS(rs, 16)] = FNMS(T2N, T2O, T2L * T2M); ci[WS(rs, 16)] = FMA(T2N, T2M, T2L * T2O); T2S = T2Q + T2R; T2W = T2U - T2V; cr[WS(rs, 8)] = FNMS(T2T, T2W, T2P * T2S); ci[WS(rs, 8)] = FMA(T2T, T2S, T2P * T2W); } } { E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J; T4s = FMA(KP951056516, T4o, KP587785252 * T4r); T4D = FMA(KP951056516, T4B, KP587785252 * T4C); T4N = FNMS(KP951056516, T4C, KP587785252 * T4B); T4I = FNMS(KP951056516, T4r, KP587785252 * T4o); { E T4w, T4z, T4h, T4k; T4w = KP559016994 * (T4u - T4v); T4z = FNMS(KP250000000, T4y, T4x); T4A = T4w + T4z; T4M = T4z - T4w; T4h = KP559016994 * (T4d - T4g); T4k = FNMS(KP250000000, T4j, T4i); T4l = T4h + T4k; T4J = T4k - T4h; } { E T4t, T4E, T4Q, T4S; T4t = T4l - T4s; T4E = T4A + T4D; cr[WS(rs, 1)] = FNMS(TG, T4E, TD * T4t); ci[WS(rs, 1)] = FMA(TD, T4E, TG * T4t); T4Q = T4J - T4I; T4S = T4M + T4N; cr[WS(rs, 17)] = FNMS(T4R, T4S, T4P * T4Q); ci[WS(rs, 17)] = FMA(T4P, T4S, T4R * T4Q); } { E T4F, T4G, T4K, T4O; T4F = T4s + T4l; T4G = T4A - T4D; cr[WS(rs, 9)] = FNMS(T1T, T4G, T1R * T4F); ci[WS(rs, 9)] = FMA(T1R, T4G, T1T * T4F); T4K = T4I + T4J; T4O = T4M - T4N; cr[WS(rs, 13)] = FNMS(T4L, T4O, T4H * T4K); ci[WS(rs, 13)] = FMA(T4H, T4O, T4L * T4K); } } { E T1p, T1w, T22, T1X, T1J, T23, TU, T1W; T1p = FNMS(KP951056516, T1o, KP587785252 * T19); T1w = FNMS(KP951056516, T1v, KP587785252 * T1u); T22 = FMA(KP951056516, T1u, KP587785252 * T1v); T1X = FMA(KP951056516, T19, KP587785252 * T1o); { E T1H, T1I, TS, TT; T1H = FNMS(KP250000000, T1G, T1D); T1I = KP559016994 * (T1E - T1F); T1J = T1H - T1I; T23 = T1I + T1H; TS = FNMS(KP250000000, TR, TK); TT = KP559016994 * (TN - TQ); TU = TS - TT; T1W = TT + TS; } { E T1q, T1K, T2e, T2g; T1q = TU - T1p; T1K = T1w + T1J; cr[WS(rs, 2)] = FNMS(T1t, T1K, TJ * T1q); ci[WS(rs, 2)] = FMA(T1t, T1q, TJ * T1K); T2e = T1W + T1X; T2g = T23 - T22; cr[WS(rs, 14)] = FNMS(T2f, T2g, T2d * T2e); ci[WS(rs, 14)] = FMA(T2f, T2e, T2d * T2g); } { E T1O, T1Q, T1Y, T24; T1O = TU + T1p; T1Q = T1J - T1w; cr[WS(rs, 18)] = FNMS(T1P, T1Q, T1N * T1O); ci[WS(rs, 18)] = FMA(T1P, T1O, T1N * T1Q); T1Y = T1W - T1X; T24 = T22 + T23; cr[WS(rs, 6)] = FNMS(T21, T24, T1V * T1Y); ci[WS(rs, 6)] = FMA(T21, T1Y, T1V * T24); } } { E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y; T3f = FNMS(KP951056516, T3e, KP587785252 * T37); T3N = FNMS(KP951056516, T3M, KP587785252 * T3L); T43 = FMA(KP951056516, T3L, KP587785252 * T3M); T3Z = FMA(KP951056516, T37, KP587785252 * T3e); { E T3I, T3J, T3y, T3z; T3I = FNMS(KP250000000, T3H, T3E); T3J = KP559016994 * (T3F - T3G); T3K = T3I - T3J; T42 = T3J + T3I; T3y = FNMS(KP250000000, T3x, T3i); T3z = KP559016994 * (T3p - T3w); T3A = T3y - T3z; T3Y = T3z + T3y; } { E T3B, T3O, T45, T46; T3B = T3f + T3A; T3O = T3K - T3N; cr[WS(rs, 3)] = FNMS(TH, T3O, TE * T3B); ci[WS(rs, 3)] = FMA(TE, T3O, TH * T3B); T45 = T3Z + T3Y; T46 = T42 - T43; cr[WS(rs, 19)] = FNMS(T1M, T46, T1L * T45); ci[WS(rs, 19)] = FMA(T1L, T46, T1M * T45); } { E T3S, T3W, T40, T44; T3S = T3A - T3f; T3W = T3K + T3N; cr[WS(rs, 7)] = FNMS(T3V, T3W, T3R * T3S); ci[WS(rs, 7)] = FMA(T3R, T3W, T3V * T3S); T40 = T3Y - T3Z; T44 = T42 + T43; cr[WS(rs, 11)] = FNMS(T41, T44, T3X * T40); ci[WS(rs, 11)] = FMA(T3X, T44, T41 * T40); } } } }}static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, {204, 92, 72, 0} };void X(codelet_hb2_20) (planner *p) { X(khc2hc_register) (p, hb2_20, &desc);}#endif /* HAVE_FMA */
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -