亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? index.html

?? CRF工具包
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
     <ul>     <li>unigram: |output tag| x |all possible strings expanded with a macro|</li>     <li>bigram: |output tag| x |output tag| x |all possible strings expanded with a macro|</li>     </ul>     <p></p></ul><li>Identifiers for distinguishing relative positions</li><p>You also need to put an identifier in templates when relative positions oftokens must be distinguished. </p><p>In the following case, the macro "%x[-2,1]" and "%x[1,1]" will be replacedinto "DT". But they indicates different "DT".</p><pre>The       DT  B-NPpen       NN  I-NPis        VB  B-VP << CURRENT TOKENa         DT  B-NP</pre><p>To distinguish both two, put an unique identifier (U01: or U02:) in thetemplate:</p><pre>U01:%x[-2,1]U02:%x[1,1]</pre><p>In this case both two templates are regarded as different ones, asthey are expanded into different features, "U01:DT" and "U02:DT".You can use any identifier whatever you like, butit is useful to use numerical numbers to manage them, because they simply correspond to feature IDs.</p><p>If you want to use "bag-of-words" feature, in other words,not to care the relative position of features, You don't need toput such identifiers.</p><li>Example</li><p>Here is the template example for <a href="http://www.cnts.ua.ac.be/conll2000/chunking/">CoNLL 2000</a> shared task and Base-NP chunkingtask. Only one bigram template ('B') is used. This means thatonly  combinations of previous output token and current token areused as bigram features. The lines starting from # or empty lines arediscarded as comments</p><pre># UnigramU00:%x[-2,0]U01:%x[-1,0]U02:%x[0,0]U03:%x[1,0]U04:%x[2,0]U05:%x[-1,0]/%x[0,0]U06:%x[0,0]/%x[1,0]U10:%x[-2,1]U11:%x[-1,1]U12:%x[0,1]qU13:%x[1,1]U14:%x[2,1]U15:%x[-2,1]/%x[-1,1]U16:%x[-1,1]/%x[0,1]U17:%x[0,1]/%x[1,1]U18:%x[1,1]/%x[2,1]U20:%x[-2,1]/%x[-1,1]/%x[0,1]U21:%x[-1,1]/%x[0,1]/%x[1,1]U22:%x[0,1]/%x[1,1]/%x[2,1]# BigramB</pre></ul></ul> <h3><a name="training">Training (encoding)</a></h3> <p>Use <i>crf_learn</i> command:  <pre>% crf_learn template_file train_file model_file</pre><p>where <i>template_file</i> and <i>train_file</i>are the files you need to prepare in advance.<i>crf_learn</i> generates the trained model file in<i>model_file</i>.</p><p>crf_learn outputs the following information.</p><pre>CRF++: Yet Another CRF Tool KitCopyright(C) 2005 Taku Kudo, All rights reserved.reading training data: 100.. 200.. 300.. 400.. 500.. 600.. 700.. 800.. Done! 1.94 sNumber of sentences: 823Number of features:  1075862Number of thread(s): 1Freq:                1eta:                 0.00010C:                   1.00000shrinking size:      20Algorithm:           CRFiter=0 terr=0.99103 serr=1.00000 obj=54318.36623 diff=1.00000iter=1 terr=0.35260 serr=0.98177 obj=44996.53537 diff=0.17161iter=2 terr=0.35260 serr=0.98177 obj=21032.70195 diff=0.53257iter=3 terr=0.23879 serr=0.94532 obj=13642.32067 diff=0.35138iter=4 terr=0.15324 serr=0.88700 obj=8985.70071 diff=0.34134iter=5 terr=0.11605 serr=0.80680 obj=7118.89846 diff=0.20775iter=6 terr=0.09305 serr=0.72175 obj=5531.31015 diff=0.22301iter=7 terr=0.08132 serr=0.68408 obj=4618.24644 diff=0.16507iter=8 terr=0.06228 serr=0.59174 obj=3742.93171 diff=0.18953</pre><ul><li>iter: number of iterations processed</li><li>terr: error rate with respect to tags. (# of error tags/# of all tag)</li><li>serr: error rate with respect to sentences. (# of error sentences/#    of all sentences)</li><li>obj: current object value. When this value converges to a    fixed point, CRF++ stops the iteration.</li><li>diff: relative difference from the previous object value.</li></ul><p>There are 4 major parameters to control the training condition<ul> <li>-a CRF-L2 or CRF-L1:<br>     Changing the regularization algorithm. Default setting is L2.     Generally speaking, L2 performs slightly better than L1, while     the number of non-zero features in L1 is drastically smaller than     that in L2. <li>-c float: <br>     With this option, you can change the hyper-parameter for the CRFs.     With larger C value, CRF tends to overfit to the give training corpus.     This parameter trades the balance between overfitting and     underfitting. The results will significantly be influenced by     this parameter. You can find an optimal value by using     held-out data or more general model selection method such as     cross validation. <li>-f NUM:<br>     This parameter sets the cut-off threshold for the features.     CRF++ uses the features that occurs no less than NUM times     in the given training data. The default value is 1.     When you apply CRF++ to large data, the number of unique features     would amount to several millions. This option is useful in such cases. <li>-p NUM:<br>    If the PC has multiple CPUs, you can make the training faster    by using multi-threading. NUM is the number of threads.</ul><p>Here is the example where these two parameters are used.</p>  <pre>% crf_learn -f 3 -c 1.5 template_file train_file model_file</pre><p>Since version 0.45, CRF++ supports single-best MIRA training. MIRA training is used when -a MIRA option is set.<pre>% crf_learn -a MIRA template train.data modelCRF++: Yet Another CRF Tool KitCopyright(C) 2005 Taku Kudo, All rights reserved.reading training data: 100.. 200.. 300.. 400.. 500.. 600.. 700.. 800.. Done! 1.92 sNumber of sentences: 823Number of features:  1075862Number of thread(s): 1Freq:                1eta:                 0.00010C:                   1.00000shrinking size:      20Algorithm:           MIRAiter=0 terr=0.11381 serr=0.74605 act=823 uact=0 obj=24.13498 kkt=28.00000iter=1 terr=0.04710 serr=0.49818 act=823 uact=0 obj=35.42289 kkt=7.60929iter=2 terr=0.02352 serr=0.30741 act=823 uact=0 obj=41.86775 kkt=5.74464iter=3 terr=0.01836 serr=0.25881 act=823 uact=0 obj=47.29565 kkt=6.64895iter=4 terr=0.01106 serr=0.17011 act=823 uact=0 obj=50.68792 kkt=3.81902iter=5 terr=0.00610 serr=0.10085 act=823 uact=0 obj=52.58096 kkt=3.98915iter=0 terr=0.11381 serr=0.74605 act=823 uact=0 obj=24.13498 kkt=28.00000...</pre><ul><li>iter, terr, serror: same as CRF training</li><li>act: number of active examples in working set</li><li>uact: number of examples whose dual parameters reach soft margin    upper-bound C. 0 uact suggests that given training data was    linear separable</li><li>obj: current object value, ||w||^2</li><li>kkt: max kkt violation value. When it gets 0.0, MIRA training finishes</li></ul><p>There are some parameters to control the MIRA training condition</p><ul> <li>-c float: <br>     Changes soft margin parameter, which is an analogue to the soft margin     parameter C in Support Vector Machines.     The definition is basically the same as -c option in CRF training.     With larger C value, MIRA tends to overfit to the give training     corpus.  <li>-f NUM:<br>     Same as CRF <li>-H NUM:<br>     Changes shrinking size. When a training sentence is not used     in updating parameter vector NUM times, we can consider that the      instance doesn't contribute training any more. MIRA tries to     remove such instances. The process is called     "shrinking". When setting smaller NUM, shrinking occurs in early     stage, which drastically reduces     training time. However, too small NUM is not recommended.     When training finishes, MIRA tries to go through all training      examples again to know whether or not all KKT conditions are really     satisfied. Too small NUM would increase the chances of recheck.</ul><h3><a name="testing">Testing (decoding)</a></h3> <p>Use <i>crf_test</i> command:  <pre>% crf_test -m model_file test_files ...</pre><p>where <i>model_file</i> is the file <i>crf_learn</i>creates.In the testing, you don't need to specify the template file,because the model file has the same information for the template.<i>test_file</i> is the test data you want to assign sequential tags.This file has to be written in the same format as training file.</p><p>Here is an output of <i>crf_test</i>:</p><pre>% crf_test -m model test.dataRockwell        NNP     B       BInternational   NNP     I       ICorp.   NNP     I       I's      POS     B       BTulsa   NNP     I       Iunit    NN      I       I..</pre><p>The last column is given (estimated) tag. If the 3rd column is true answer tag , you can evaluate the accuracy by simply seeing the difference between the 3rd and 4th columns.</p><ul><li>verbose level</li><p>The <b>-v</b> option sets verbose level. defaultvalue is 0. By increasing the level, you can have anextra information from CRF++</p><ul><li>level 1 <br>    You can also have marginal probabilities for each tag    (a kind of confidece measure for each output tag)     and a conditional probably for the output (confidence measure for    the entire output). <pre>% crf_test -v1 -m model test.data| head# 0.478113Rockwell        NNP     B       B/0.992465International   NNP     I       I/0.979089Corp.   NNP     I       I/0.954883's      POS     B       B/0.986396Tulsa   NNP     I       I/0.991966...</pre><p>The first line "# 0.478113" shows the conditional probably for the output.Also, each output tag has a probability represented like "B/0.992465".</p><li>level 2<br><p>You can also have marginal probabilities for all other candidates.</p><pre>% crf_test -v2 -m model test.data# 0.478113Rockwell        NNP     B       B/0.992465      B/0.992465      I/0.00144946    O/0.00608594International   NNP     I       I/0.979089      B/0.0105273     I/0.979089      O/0.0103833Corp.   NNP     I       I/0.954883      B/0.00477976    I/0.954883      O/0.040337's      POS     B       B/0.986396      B/0.986396      I/0.00655976    O/0.00704426Tulsa   NNP     I       I/0.991966      B/0.00787494    I/0.991966      O/0.00015949unit    NN      I       I/0.996169      B/0.00283111    I/0.996169      O/0.000999975..</pre></ul><li>N-best outputs</li><p>With the <b>-n</b> option, you can obtain N-best resultssorted by the conditional probability of CRF. With n-best output mode, CRF++ first gives one additional line like "# N prob", where N means thatrank of the output starting from 0 and prob denotes the conditionalprobability for the output. </p><p>Note that CRF++ sometimesdiscards enumerating N-best results if it cannot find candidates anymore. This is the case when you give CRF++ a shortsentence.</p> <p>CRF++ uses a combination of forward Viterbi and backward A* search. This combinationyields the exact list of n-best results. </p><p>Here is the example of the N-best results. </p><pre>% crf_test -n 20 -m model test.data# 0 0.478113Rockwell        NNP     B       BInternational   NNP     I       ICorp.   NNP     I       I's      POS     B       B...# 1 0.194335Rockwell        NNP     B       BInternational   NNP     I       I</pre></ul></ul><h2><a name="testing">Tips</a></h2> <ul> <li>CRF++ uses the exactly same data format as <a     href="http://chasen.org/~taku/software/yamcha/">YamCha</a> uses.     You may use both two toolkits for an input data and compare the     performance between CRF and SVM <li>The output of CRF++ is also compatible to <a href="http://www.cnts.ua.ac.be/conll2000/chunking/">CoNLL 2000</a> shared task.     This allows us to use the perl script      <a href="http://www.cnts.ua.ac.be/conll2000/chunking/output.html">     conlleval.pl</a> to     evaluate system outputs. This script is very useful and     give us a list of F-measures for all chunk types</ul><h2><a name="training">Case studies</a></h2>  <p> In the example directories, you can find three case studies, baseNP chunking, Text Chunking, and Japanese named entity recognition, to use CRF++.  </p> <p> In each directory, please try the following commands </p> <pre> % crf_learn template train model % crf_test  -m model test </pre><h2><a name="todo">To Do</a></h2>    <ul>     <li>Support <a	 href="http://www-2.cs.cmu.edu/~wcohen/postscript/semiCRF.pdf">semi-Markov	 CRF</a>     <li>Support <a	 href="http://www.cs.umass.edu/~mccallum/papers/lcrf-nips2004.pdf">	 piece-wise CRF</a>     <li>Provide useful C++/C API (Currently no APIs are available)    </ul><h2><a name="links">References</a></h2>    <ul>     <li>J. Lafferty, A. McCallum, and F. Pereira.       <a href="http://www.cis.upenn.edu/~pereira/papers/crf.pdf">Conditional random fields: Probabilistic models for segmenting and      labeling sequence data</a>, In Proc. of ICML, pp.282-289, 2001     <li>F. Sha and F. Pereira. <a      href="http://www.cis.upenn.edu/~feisha/pubs/shallow03.pdf">Shallow      parsing with conditional random fields</a>, In Proc. of HLT/NAACL 2003      <li><a	 href="http://staff.science.uva.nl/~erikt/research/np-chunking.html">NP chunking</a></li>      <li><a href= "http://www.cnts.ua.ac.be/conll2000/chunking/">CoNLL	 2000 shared task: Chunking</a></li>    </ul>    <hr>    <p>$Id: index.html,v 1.23 2003/01/06 13:11:21 taku-ku Exp    $;</p>    <address>      taku@chasen.org    </address>  </body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲综合图片区| 一本大道久久a久久精二百| 国产不卡视频在线观看| 欧美亚洲国产怡红院影院| 精品久久久久一区二区国产| 亚洲综合小说图片| 国产福利视频一区二区三区| 欧美日韩一区不卡| 18欧美乱大交hd1984| 麻豆精品视频在线观看| 欧美亚洲图片小说| 最近日韩中文字幕| 成人永久aaa| 精品国精品国产尤物美女| 午夜精品福利一区二区三区蜜桃| 成人精品电影在线观看| 精品国一区二区三区| 日韩制服丝袜先锋影音| 欧美视频一区二区在线观看| 成人欧美一区二区三区视频网页| 国产在线精品一区二区夜色| 欧美一区国产二区| 午夜精品视频一区| 欧美老肥妇做.爰bbww视频| 亚洲理论在线观看| 色哟哟国产精品| 亚洲啪啪综合av一区二区三区| 国产不卡视频一区| 国产欧美日韩在线观看| 国产精品一区在线观看乱码 | 日本中文字幕一区二区视频| aaa欧美日韩| 亚洲欧洲精品一区二区精品久久久 | 亚洲三级久久久| 99久久精品99国产精品| 亚洲欧美日韩国产综合在线| av中文字幕亚洲| 伊人性伊人情综合网| 欧美性色综合网| 日本美女一区二区三区| 欧美岛国在线观看| 国产福利视频一区二区三区| 中文文精品字幕一区二区| 成+人+亚洲+综合天堂| 亚洲欧美综合网| 日本韩国精品在线| 日日摸夜夜添夜夜添精品视频| 欧美另类一区二区三区| 老汉av免费一区二区三区| 久久午夜国产精品| 不卡视频一二三| 亚洲成人一区二区在线观看| 91精品欧美久久久久久动漫| 韩国精品久久久| 亚洲日本一区二区| 91精品国产综合久久精品性色| 精品一区二区免费| 中文字幕中文字幕在线一区| 91精彩视频在线观看| 日韩主播视频在线| 欧美国产禁国产网站cc| 欧美日韩卡一卡二| 国产酒店精品激情| 亚洲一区自拍偷拍| 久久免费偷拍视频| 在线日韩一区二区| 蜜臀久久99精品久久久久久9| 国产拍欧美日韩视频二区| 在线欧美小视频| 国产一区二区导航在线播放| 一区二区三区色| 精品久久久久久亚洲综合网| 91国内精品野花午夜精品| 蜜臀精品一区二区三区在线观看| 中日韩免费视频中文字幕| 欧美日韩卡一卡二| av一本久道久久综合久久鬼色| 日本sm残虐另类| 亚洲激情六月丁香| 国产情人综合久久777777| 欧美日韩一区高清| 91在线国产观看| 久久99久久99小草精品免视看| 亚洲免费资源在线播放| 国产亚洲精品精华液| 中文字幕第一区二区| 欧美一个色资源| 韩日欧美一区二区三区| 亚洲综合一区在线| 欧美精品一区二区蜜臀亚洲| 欧美三级视频在线观看| 国产高清无密码一区二区三区| 欧美高清在线精品一区| wwwwww.欧美系列| 国产日韩av一区| 自拍偷拍亚洲综合| 婷婷激情综合网| 精品一区二区三区的国产在线播放| 国产精品亚洲一区二区三区在线 | 欧美女孩性生活视频| 欧美一区二区三区电影| 国产欧美日韩一区二区三区在线观看| 国产精品色婷婷久久58| 亚洲综合小说图片| 精品夜夜嗨av一区二区三区| 成人午夜av在线| 欧美综合一区二区| 精品国产区一区| 中文字幕一区二区三区不卡 | 另类欧美日韩国产在线| 懂色av一区二区在线播放| 色婷婷久久一区二区三区麻豆| 欧美精品在线一区二区三区| wwwwxxxxx欧美| 亚洲永久免费视频| 国产呦精品一区二区三区网站| 97久久人人超碰| 日韩一区二区在线看| 国产精品毛片大码女人| 午夜精品福利久久久| 丁香一区二区三区| 欧美日韩国产综合一区二区三区| 国产亚洲人成网站| 亚洲一卡二卡三卡四卡无卡久久| 久久精品国产成人一区二区三区| 99精品国产热久久91蜜凸| 日韩一级在线观看| 亚洲精品国产一区二区精华液 | 色综合久久久久久久久| 欧美videossexotv100| 亚洲精品一二三区| 国产精品影视在线| 日韩一区二区在线观看| 亚洲一级片在线观看| 不卡视频免费播放| 欧美岛国在线观看| 日韩国产在线观看| 色天天综合色天天久久| 国产欧美一区二区精品久导航| 日韩在线卡一卡二| 在线亚洲一区二区| 中文字幕在线观看一区| 精品亚洲成a人| 欧美精品日日鲁夜夜添| 亚洲综合成人在线视频| av不卡免费在线观看| 久久精品这里都是精品| 精品午夜一区二区三区在线观看| 欧美三区免费完整视频在线观看| 中文字幕av资源一区| 国产真实乱对白精彩久久| 日韩精品中午字幕| 日韩精品免费专区| 欧美午夜精品久久久久久超碰| 中文字幕制服丝袜一区二区三区 | 国产精品国产三级国产aⅴ原创| 国产尤物一区二区在线| 精品国产一区二区三区久久久蜜月 | 午夜国产精品一区| 色国产精品一区在线观看| 国产精品久久久久四虎| 东方欧美亚洲色图在线| 欧美经典一区二区| 国产成人啪免费观看软件| 久久久精品tv| 国产mv日韩mv欧美| 欧美激情资源网| 成人性色生活片| 国产精品色哟哟| 91免费视频网址| 亚洲精品国产精华液| 在线视频国内一区二区| 亚洲成人www| 欧美一级理论片| 激情六月婷婷综合| 久久综合九色综合欧美亚洲| 国产一区二区三区免费观看| 国产欧美日韩另类一区| 成人动漫在线一区| 亚洲欧美激情在线| 欧美欧美欧美欧美首页| 青青草国产精品97视觉盛宴| 欧美zozozo| 丁香一区二区三区| 夜夜精品浪潮av一区二区三区| 欧美视频一区二区在线观看| 免费久久99精品国产| 久久久久久久久久看片| 成人app网站| 亚洲va欧美va人人爽| 日韩欧美www| 99视频超级精品| 午夜精品影院在线观看| 久久久亚洲高清| 色综合久久久久综合| 免费看日韩精品| 欧美激情综合五月色丁香小说| 色综合色狠狠综合色| 婷婷六月综合亚洲| 国产午夜亚洲精品午夜鲁丝片|