亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? regem.m

?? 不完全數(shù)據(jù)分析MATLAB程序(部分信息重建):最小均方估計、協(xié)方差矩陣、缺失值推測
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [X, M, C, Xerr] = regem(X, options)%REGEM   Imputation of missing values with regularized EM algorithm.%%    [X, M, C, Xerr] = REGEM(X, OPTIONS) replaces missing values%    (NaNs) in the data matrix X with imputed values. REGEM%    returns%  %       X,    the data matrix with imputed values substituted for NaNs,  %       M,    the estimated mean of X, %       C,    the estimated covariance matrix of X,%       Xerr, an estimated standard error of the imputed values.%  %    Missing values are imputed with a regularized expectation%    maximization (EM) algorithm. In an iteration of the EM algorithm,%    given estimates of the mean and of the covariance matrix are%    revised in three steps. First, for each record X(i,:) with%    missing values, the regression parameters of the variables with%    missing values on the variables with available values are%    computed from the estimates of the mean and of the covariance%    matrix. Second, the missing values in a record X(i,:) are filled%    in with their conditional expectation values given the available%    values and the estimates of the mean and of the covariance%    matrix, the conditional expectation values being the product of%    the available values and the estimated regression%    coefficients. Third, the mean and the covariance matrix are%    re-estimated, the mean as the sample mean of the completed%    dataset and the covariance matrix as the sum of the sample%    covariance matrix of the completed dataset and an estimate of the%    conditional covariance matrix of the imputation error. %%    In the regularized EM algorithm, the parameters of the regression%    models are estimated by a regularized regression method. By%    default, the parameters of the regression models are estimated by%    an individual ridge regression for each missing value in a%    record, with one regularization parameter (ridge parameter) per%    missing value.  Optionally, the parameters of the regression%    models can be estimated by a multiple ridge regression for each%    record with missing values, with one regularization parameter per%    record with missing values. The regularization parameters for the%    ridge regressions are selected as the minimizers of the%    generalized cross-validation (GCV) function. As another option,%    the parameters of the regression models can be estimated by%    truncated total least squares. The truncation parameter, a%    discrete regularization parameter, is fixed and must be given as%    an input argument. The regularized EM algorithm with truncated%    total least squares is faster than the regularized EM algorithm%    with with ridge regression, requiring only one eigendecomposition%    per iteration instead of one eigendecomposition per record and%    iteration. But an adaptive choice of truncation parameter has not%    been implemented for truncated total least squares. So the%    truncated total least squares regressions can be used to compute%    initial values for EM iterations with ridge regressions, in which%    the regularization parameter is chosen adaptively.%  %    As default initial condition for the imputation algorithm, the%    mean of the data is computed from the available values, mean%    values are filled in for missing values, and a covariance matrix%    is estimated as the sample covariance matrix of the completed%    dataset with mean values substituted for missing%    values. Optionally, initial estimates for the missing values and%    for the covariance matrix estimate can be given as input%    arguments.% %    The OPTIONS structure specifies parameters in the algorithm:%%     Field name         Parameter                                  Default%%     OPTIONS.regress    Regression procedure to be used:           'mridge'%                        'mridge': multiple ridge regression%                        'iridge': individual ridge regressions%                        'ttls':   truncated total least squares %                                  regression %  %     OPTIONS.stagtol    Stagnation tolerance: quit when            5e-3 %                        consecutive iterates of the missing%                        values are so close that%                          norm( Xmis(it)-Xmis(it-1) ) %                             <= stagtol * norm( Xmis(it-1) )%  %     OPTIONS.maxit      Maximum number of EM iterations.           30%  %     OPTIONS.inflation  Inflation factor for the residual          1 %                        covariance matrix. Because of the %                        regularization, the residual covariance %                        matrix underestimates the conditional %                        covariance matrix of the imputation %                        error. The inflation factor is to correct %                        this underestimation. The update of the %                        covariance matrix estimate is computed %                        with residual covariance matrices %                        inflated by the factor OPTIONS.inflation,%                        and the estimates of the imputation error%                        are inflated by the same factor. %%     OPTIONS.disp       Diagnostic output of algorithm. Set to     1%                        zero for no diagnostic output.%%     OPTIONS.regpar     Regularization parameter.                  not set %                        For ridge regression, set regpar to %                        sqrt(eps) for mild regularization; leave %                        regpar unset for GCV selection of%                        regularization parameters.%                        For TTLS regression, regpar must be set%                        and is a fixed truncation parameter. %%     OPTIONS.relvar_res Minimum relative variance of residuals.    5e-2%                        From the parameter OPTIONS.relvar_res, a%                        lower bound for the regularization %                        parameter is constructed, in order to %                        prevent GCV from erroneously choosing %                        too small a regularization parameter.%  %     OPTIONS.minvarfrac Minimum fraction of total variation in     0%                        standardized variables that must be %                        retained in the regularization.%                        From the parameter OPTIONS.minvarfrac, %                        an approximate upper bound for the %                        regularization parameter is constructed. %                        The default value OPTIONS.minvarfrac = 0 %                        essentially corresponds to no upper bound %                        for the regularization parameter.   %  %     OPTIONS.Xmis0      Initial imputed values. Xmis0 is a         not set%                        (possibly sparse) matrix of the same %                        size as X with initial guesses in place%                        of the NaNs in X.  %  %     OPTIONS.C0         Initial estimate of covariance matrix.     not set%                        If no initial covariance matrix C0 is %                        given but initial estimates Xmis0 of the %                        missing values are given, the sample %                        covariance matrix of the dataset %                        completed with initial imputed values is %                        taken as an initial estimate of the %                        covariance matrix. %  %     OPTIONS.Xcmp       Display the weighted rms difference        not set%                        between the imputed values and the %                        values given in Xcmp, a matrix of the %                        same size as X but without missing %                        values. By default, REGEM displays %                        the rms difference between the imputed %                        values at consecutive iterations. The %                        option of displaying the difference %                        between the imputed values and reference %                        values exists for testing purposes.%%     OPTIONS.neigs      Number of eigenvalue-eigenvector pairs     not set%                        to be computed for TTLS regression. %                        By default, all nonzero eigenvalues and %                        corresponding eigenvectors are computed. %                        By computing fewer (neigs) eigenvectors, %                        the computations can be accelerated, but %                        the residual covariance matrices become %                        inaccurate. Consequently, the residual %                        covariance matrices underestimate the %                        imputation error conditional covariance %                        matrices more and more as neigs is %                        decreased.  %    References: %    [1] T. Schneider, 2001: Analysis of incomplete climate data:%        Estimation of mean values and covariance matrices and%        imputation of missing values. Journal of Climate, 14,%        853--871.  %    [2] R. J. A. Little and D. B. Rubin, 1987: Statistical%        Analysis with Missing Data. Wiley Series in Probability%        and Mathematical Statistics. (For EM algorithm.) %    [3] P. C. Hansen, 1997: Rank-Deficient and Discrete Ill-Posed%        Problems: Numerical Aspects of Linear Inversion. SIAM%        Monographs on Mathematical Modeling and Computation.%        (For regularization techniques, including the selection of %        regularization parameters.)    error(nargchk(1, 2, nargin))     % check number of input arguments     if ndims(X) > 2,  error('X must be vector or 2-D array.'); end  % if X is a vector, make sure it is a column vector (a single variable)  if length(X)==prod(size(X))          X = X(:);                        end   [n, p]       = size(X);  % number of degrees of freedom for estimation of covariance matrix  dofC         = n - 1;            % use degrees of freedom correction           % ==============           process options        ========================  if nargin ==1 | isempty(options)    fopts      = [];  else    fopts      = fieldnames(options);  end  % initialize options structure for regression modules  optreg       = [];    if strmatch('regress', fopts)    regress    = lower(options.regress);    switch regress     case {'mridge', 'iridge'}      % OK     case {'ttls'}            if ~strmatch('regpar', fopts)	error('Truncation parameter for TTLS regression must be given.')      else	trunc  = min([options.regpar, n-1, p]);      end            if strmatch('neigs', fopts)	neigs  = options.neigs;      else	neigs  = min(n-1, p);      end           otherwise            error(['Unknown regression method ', regress])          end  else    regress    = 'mridge';  end    if strmatch('stagtol', fopts)    stagtol    = options.stagtol;  else    stagtol    = 5e-3;  end  if strmatch('maxit', fopts)    maxit      = options.maxit;  else    maxit      = 30;  end    if strmatch('inflation', fopts)    inflation  = options.inflation;  else    inflation  = 1;  end    if strmatch('relvar_res', fopts)    optreg.relvar_res = options.relvar_res;   else    optreg.relvar_res = 5e-2;   end    if strmatch('minvarfrac', fopts)    optreg.minvarfrac = options.minvarfrac;   else    optreg.minvarfrac = 0;   end  h_given      = 0;  if strmatch('regpar', fopts)    h_given    = 1;    optreg.regpar = options.regpar;    if strmatch(regress, 'iridge')      regress  = 'mridge';

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩美女一区二区三区| 久久99热这里只有精品| 久久99国产精品免费| www.综合网.com| 精品少妇一区二区三区在线视频| 中文字幕中文在线不卡住| 欧美a一区二区| 日本电影欧美片| 国产亚洲成av人在线观看导航| 午夜精品在线看| 色婷婷国产精品| 国产精品久久久久一区二区三区 | 亚洲午夜激情av| 91在线免费看| 中文字幕va一区二区三区| 久久精品国产99| 欧美午夜片在线看| 亚洲精品免费一二三区| 99久久婷婷国产综合精品电影 | 亚洲欧美日韩久久精品| 国产成人在线免费| 精品国产污污免费网站入口| 亚洲成人激情社区| 欧美日本一区二区在线观看| 亚洲成人免费影院| 欧美日韩视频不卡| 午夜精品福利久久久| 欧美日韩和欧美的一区二区| 亚洲一区二区3| 在线观看日韩精品| 亚洲一区二区中文在线| 在线视频一区二区免费| 亚洲观看高清完整版在线观看| 在线精品视频免费观看| 亚洲一区二区三区视频在线| 欧洲一区二区av| 亚洲大片免费看| 欧美一级理论片| 蜜桃91丨九色丨蝌蚪91桃色| 精品国产乱码久久久久久影片| 精品写真视频在线观看| 久久精品一区四区| av在线不卡网| 亚洲午夜久久久久久久久电影院| 欧美另类高清zo欧美| 美女免费视频一区二区| 久久久精品免费免费| 成人精品国产一区二区4080| 亚洲色图欧洲色图| 欧美日本一道本| 九一九一国产精品| 日本一二三不卡| 欧美日韩免费电影| 久久精品国产免费| 国产精品福利一区| 欧美日韩高清在线播放| 久久99精品一区二区三区| 久久精品水蜜桃av综合天堂| 91麻豆精品一区二区三区| 一区二区三区日韩欧美精品| 欧美一级免费观看| 成人av在线资源网站| 亚洲成av人片| 久久精品欧美日韩| 欧美少妇xxx| 精久久久久久久久久久| 亚洲欧洲无码一区二区三区| 91精品国产入口| 成人免费看片app下载| 婷婷开心久久网| 中文字幕久久午夜不卡| 7777精品伊人久久久大香线蕉| 国产在线播精品第三| 亚洲综合在线第一页| 久久久久久久久久久久久女国产乱| 91浏览器在线视频| 国产精品综合在线视频| 日韩专区中文字幕一区二区| 国产精品理论在线观看| 欧美一级生活片| 欧洲亚洲精品在线| 成人午夜视频在线| 日韩电影免费在线看| 亚洲女厕所小便bbb| 2017欧美狠狠色| 91精品国产综合久久福利| 99精品欧美一区二区三区小说| 久久99国内精品| 日韩精品国产欧美| 一区二区三区高清不卡| 国产精品亲子乱子伦xxxx裸| 日韩手机在线导航| 欧美色国产精品| 色爱区综合激月婷婷| 岛国av在线一区| 国产一区二区三区不卡在线观看| 亚洲午夜久久久| 一区二区三区欧美日韩| 国产精品成人一区二区艾草 | 97精品视频在线观看自产线路二| 久久激情五月婷婷| 亚洲成人自拍网| 亚洲乱码国产乱码精品精小说| 国产精品理伦片| 国产精品三级视频| 国产精品天天看| 欧美国产综合色视频| 久久亚洲二区三区| wwwwww.欧美系列| 欧美大片日本大片免费观看| 日韩欧美亚洲国产精品字幕久久久| 欧美日韩一卡二卡三卡| 欧洲激情一区二区| 欧美天堂亚洲电影院在线播放| 99在线精品免费| 99国产精品视频免费观看| jizzjizzjizz欧美| 91小视频免费观看| 色偷偷久久人人79超碰人人澡| 色综合久久久久综合体| 欧美日韩中文字幕一区| 欧美日韩成人激情| 日韩精品一区二区三区swag| 精品日韩欧美一区二区| 国产午夜精品一区二区三区嫩草| 日本一区二区三区四区在线视频| 国产欧美精品一区二区三区四区| 国产精品激情偷乱一区二区∴| 亚洲青青青在线视频| 亚洲午夜激情网站| 麻豆精品一区二区三区| 国产精品一区二区三区四区 | 欧美蜜桃一区二区三区| 欧美一区二区三区公司| 精品对白一区国产伦| 国产精品久99| 日韩高清不卡一区| 国产成人av电影在线| 在线免费视频一区二区| 日韩一区二区在线看| 日本一区二区在线不卡| 亚洲国产精品影院| 国产一区不卡视频| 一本一本大道香蕉久在线精品| 欧美另类一区二区三区| 国产日韩精品一区二区三区 | 亚洲欧美一区二区不卡| 亚洲成av人片在线观看无码| 国模无码大尺度一区二区三区| av电影在线观看一区| 69久久夜色精品国产69蝌蚪网| 国产亚洲福利社区一区| 亚洲成人黄色小说| 丁香婷婷综合色啪| 制服丝袜亚洲网站| 国产精品国产自产拍高清av | 日韩精品国产欧美| 懂色av一区二区三区免费观看| 在线中文字幕不卡| 国产欧美视频在线观看| 亚洲www啪成人一区二区麻豆| 国产一区二区三区久久久| 欧美视频精品在线| 国产精品久久久久久久久免费相片 | 亚洲欧美另类图片小说| 精品在线一区二区三区| 91成人在线观看喷潮| 欧美高清在线精品一区| 手机精品视频在线观看| 色欲综合视频天天天| 久久精品一区二区三区不卡| 午夜精品久久久久久久99樱桃| 成人性生交大片| 久久免费偷拍视频| 裸体一区二区三区| 5月丁香婷婷综合| 亚洲一区二区三区激情| 91丨porny丨国产入口| 久久久99精品免费观看不卡| 免费观看成人av| 欧美老人xxxx18| 亚洲一区在线看| 色综合久久66| 亚洲女人****多毛耸耸8| eeuss鲁一区二区三区| 久久久久久电影| 国产精品99久久不卡二区| 日韩女优av电影| 免费一区二区视频| 欧美一卡在线观看| 日本强好片久久久久久aaa| 欧美三级电影网站| 亚洲超碰97人人做人人爱| 欧美视频一区二| 亚洲成av人片在线| 91精品国产色综合久久不卡蜜臀| 日韩黄色免费电影| 91精品国模一区二区三区| 美国十次综合导航| 久久久美女毛片|