?? chp7ex4.m
字號:
% Iterative solution Using Newton method
alpha =[500; 400; 200];
beta = [5.3; 5.5; 5.8]; gama=[.004; .006; .009];
PD=800;
DelP = 10; % Error in DelP is set to a high value
lambda = input('Enter estimated value of Lambda = ');
fprintf('\n ')
disp([' Lambda P1 P2 P3 DP'...
' grad Delambda'])
iter = 0; % Iteration counter
while abs(DelP) >= 0.001 % Test for convergence
iter = iter + 1; % No. of iterations
P = (lambda - beta)./(2*gama);
DelP =PD - sum(P); % Residual
J = sum( ones(length(gama), 1)./(2*gama)); % Gradient sum
Delambda = DelP/J; % Change in variable
disp([lambda, P(1), P(2), P(3), DelP, J, Delambda])
lambda = lambda + Delambda; % Successive solution
end
totalcost = sum(alpha + beta.*P + gama.*P.^2)
%Graphical Demonstration of Example 7.4
axis([0 450 6.5 10.5]);
P1=250:10:450; P2 = 150:10:350; P3=100:10:250;
IC1= 5.3 + 0.008*P1;
IC2= 5.5 + 0.012*P2;
IC3= 5.8 + 0.018*P3;
Px = 0:100:400;
plot(P1, IC1, P2, IC2, P3, IC3, Px, lambda*ones(1, length(Px)),'-m'),
xlabel('P, MW'), ylabel(' $/MWh'), grid
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -