亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? geometric.htm

?? 國外專家做的求解LMI魯棒控制的工具箱,可以相對高效的解決LMI問題
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Language" content="en-us">
<title>YALMIP Example : Geometric programming</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1251">
<meta content="Microsoft FrontPage 6.0" name="GENERATOR">
<meta name="ProgId" content="FrontPage.Editor.Document">
<link href="yalmip.css" type="text/css" rel="stylesheet">
<base target="_self">
</head>

<body leftMargin="0" topMargin="0">

<div align="left">
  <table border="0" cellpadding="4" cellspacing="3" style="border-collapse: collapse" bordercolor="#000000" width="100%" align="left" height="100%">
    <tr>
      <td width="100%" align="left" height="100%" valign="top">
      <h2>Geometric programming</h2>
      <hr noShade SIZE="1">
      <p>
    <img border="0" src="exclamationmark.jpg" align="left" width="16" height="16">This 
      example requires <a href="solvers.htm#mosek">MOSEK</a> (or
    <a href="solvers.htm#fmincon">fmincon</a>, see below). <br>
      <br>
      Nonlinear terms can be defined also with negative and non-integer powers. 
      This can be used to define geometric optimization problems.<br>
    <img border="0" src="gemoetric.gif" width="144" height="102" hspace="77" vspace="10"></p>
      <p>The solver <a href="solvers.htm#mosek">MOSEK</a> is capable of 
      solving a sub-class of geometric problems where <b>c<font face="Times New Roman">&#8805;0</font></b> 
      with the additional constraint <b>t<font face="Times New Roman">&#8805;0, </font>
      </b>so called posynomial geometric programming. The following example is 
      taken from the <a href="solvers.htm#mosek">MOSEK</a> manual. (note, 
      the positivity constraint on <b><font face="Times New Roman">t </font></b>
      will be added automatically)</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>t1 = sdpvar(1,1);
t2 = sdpvar(1,1);
t3 = sdpvar(1,1);
obj = (40*t1^-1*t2^-0.5*t3^-1)+(20*t1*t3)+(40*t1*t2*t3);
F = set((1/3)*t1^-2*t2^-2+(4/3)*t2^0.5*t3^-1 &lt; 1);
solvesdp(F,obj);</pre>
          </td>
        </tr>
      </table>
      <p>If the geometric program violates the posynomial assumption, an error 
      will be issued.</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>solvesdp(F + set(t1-t2 &lt; 1),obj)
Warning: Solver not applicable
<font color="#000000"> ans = 
  yalmiptime: 0.0600
  solvertime: 0
  info: 'Solver not applicable'
  problem: -4</font></pre>
          </td>
        </tr>
      </table>
      <p>YALMIP will automatically convert some simple violations of the 
      posynomial assumptions, such as lower bounds on monomial terms and 
      maximization of negative monomials. The following small program maximizes 
      the volume of an open box, under constraints on the floor and wall area, 
      and constraints on the relation between the height, width and depth 
      (example from
           <a href="readmore.htm#BOYDETAL2">[S. Boyd, S. Kim, L. Vandenberghe, A. Hassibi]</a> 
           ).</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>sdpvar h w d

Awall  = 1;
Afloor = 1;

F = set(0.5 &lt; h/w &lt; 2) + set(0.5 &lt; d/w &lt; 2);
F = F + set(2*(h*w+h*d) &lt; Awall) + set(w*d &lt; Afloor);

solvesdp(F,-(h*w*d))</pre>
          </td>
        </tr>
      </table>
      <p>The posynomial geometric programming problem is not convex in its 
      standard formulation. Hence, if a general nonlinear solver is applied to 
      the problem, it will typically fail. However, by performing a suitable 
      logarithmic variable transformation, the problem is rendered convex. 
      YALMIP has built-in support for performing this variable change, and solve 
      the problem using the nonlinear solver fmincon. To invoke this module in 
      YALMIP, use the solver 
      tag <code>'fmincon-geometric'.</code>Note that this feature mainly is intended for the 
    <a href="solvers.htm#fmincon">fmincon</a> solver in the MathWorks Optimization Toolbox. 
		It may work in the
    <a href="solvers.htm#fmincon">fmincon</a> solver in
		<a target="_blank" href="http://tomlab.biz">TOMLAB</a>, but this has not 
		been tested to any larger extent.</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>t1 = sdpvar(1,1);
t2 = sdpvar(1,1);
t3 = sdpvar(1,1);
obj = (40*t1^-1*t2^-0.5*t3^-1)+(20*t1*t3)+(40*t1*t2*t3);
F = set((1/3)*t1^-2*t2^-2+(4/3)*t2^0.5*t3^-1 &lt; 1);
solvesdp(F,obj,sdpsettings('solver','fmincon-geometric'));</pre>
          </td>
        </tr>
      </table>
      <h3>Generalized geometric programming</h3>
      <p>Some geometric programs, although not given in standard form, can still 
      be solved using a standard geometric programming solver after some some 
      additional variables and constraints have been introduced. YALMIP has 
      built-in support for some of these conversion.
      </p>
      <p>To begin with, nonlinear operators can be used also in geometric 
      programs, as in any other optimization problems (as long as YALMIP is 
      capable of proving convexity, see the <a href="extoperators.htm">nonlinear 
      operator examples</a>)</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>t1 = sdpvar(1,1);
t2 = sdpvar(1,1);
t3 = sdpvar(1,1);
obj = (40*t1^-1*t2^-0.5*t3^-1)+(20*t1*t3)+(40*t1*t2*t3);

F = set(max((1/3)*t1^-2*t2^-2+(4/3)*t2^0.5*t3^-1,0.25*t1*t2) &lt; min(t1,t2));
solvesdp(F,obj);</pre>
          </td>
        </tr>
      </table>
      <p>Powers of posynomials are allowed in generalized geometric 
      programs. YALMIP will automatically take care of this and convert the 
      problems to a standard geometric programs. Note that the power has to be 
      positive if used on the left-hand side of a &lt;, and negative otherwise.</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>t1 = sdpvar(1,1);
t2 = sdpvar(1,1);
t3 = sdpvar(1,1);
obj = (40*t1^-1*t2^-0.5*t3^-1)+(20*t1*t3)+(40*t1*t2*t3);

F = set(max((1/3)*t1^-2*t2^-2+(4/3)*t2^0.5*t3^-1,0.25*t1*t2) &lt; min((t1+0.5*t2)^-1,t2));
F = F + set((2*t1+3*t2^-1)^0.5 &lt; 2);

solvesdp(F,obj);</pre>
          </td>
        </tr>
      </table>
      <p>To understand how a generalized geometric program can be converted to a 
      standard geometric program. the reader is referred to
           <a href="readmore.htm#BOYDETAL2">[S. Boyd, S. Kim, L. Vandenberghe, A. Hassibi]</a> 
           </td>
    </tr>
  </table>
</div>

</body>

</html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品美女久久久久高潮| 在线播放视频一区| 精品在线视频一区| 美女视频网站黄色亚洲| 视频一区视频二区中文| 日韩经典一区二区| 日韩成人伦理电影在线观看| 日韩高清在线不卡| 麻豆成人久久精品二区三区红 | 亚洲一区二区三区四区在线免费观看| 国产欧美一区二区三区在线看蜜臀| 欧美精品一区二区三区在线播放| 欧美一区二区三区视频免费播放| 日韩欧美一区在线观看| 日韩精品中文字幕在线不卡尤物 | 成人午夜私人影院| 成人精品视频一区| 欧美亚州韩日在线看免费版国语版| 欧美性大战久久久久久久蜜臀| 欧美三区在线视频| 精品黑人一区二区三区久久| 久久久99精品久久| 亚洲天堂久久久久久久| 亚洲成人免费在线观看| 免费成人结看片| 成人丝袜高跟foot| 欧美丝袜丝交足nylons图片| 欧美一级精品在线| 中文字幕av不卡| 亚洲国产精品自拍| 国产毛片精品视频| 在线看不卡av| 久久久国产午夜精品 | 在线观看日韩高清av| 欧美男同性恋视频网站| 久久久综合网站| 一区二区三区欧美久久| 久久se精品一区二区| 99久久久久免费精品国产 | 久久精品亚洲乱码伦伦中文| 亚洲激情中文1区| 国产一区二区三区精品视频| 日本道精品一区二区三区| 欧美电影免费观看高清完整版在 | 亚洲一区二区三区在线| 国产一区二区三区四区五区入口| 色88888久久久久久影院按摩| 91精品国产91综合久久蜜臀| 一区二区中文视频| 精品在线一区二区| 欧美日韩国产在线播放网站| 日本一区二区不卡视频| 亚洲成人中文在线| 一本大道久久a久久综合婷婷| 精品剧情v国产在线观看在线| 一区二区三区在线视频免费 | 97se亚洲国产综合在线| 国产亚洲一区二区三区在线观看| 亚洲成人tv网| 欧美无人高清视频在线观看| 亚洲欧美中日韩| 丁香一区二区三区| 欧美精品一区二区精品网| 性做久久久久久久免费看| 色先锋资源久久综合| 国产蜜臀97一区二区三区| 美腿丝袜在线亚洲一区| 7777精品伊人久久久大香线蕉| 亚洲乱码中文字幕综合| 97久久超碰精品国产| 国产精品美女久久福利网站 | 色婷婷精品久久二区二区蜜臀av | 中文字幕一区日韩精品欧美| 久久99精品久久久| 欧美大片日本大片免费观看| 日韩黄色免费网站| 91精品啪在线观看国产60岁| 午夜视频一区二区| 欧美人xxxx| 日韩av在线发布| 日韩限制级电影在线观看| 午夜精品免费在线| 欧美一区二区三区免费在线看| 午夜免费久久看| 91精品一区二区三区久久久久久| 天天色 色综合| 欧美一区二区视频网站| 久久精品久久久精品美女| 日韩欧美国产电影| 国产精品夜夜嗨| 国产精品久久久久久久蜜臀| 色综合久久综合网| 亚洲五码中文字幕| 日韩精品一区二区在线观看| 国产盗摄一区二区| 亚洲男女毛片无遮挡| 欧美日韩的一区二区| 免费成人在线影院| 国产精品久久久久久久久久久免费看| av色综合久久天堂av综合| 亚洲一区二区三区四区不卡| 日韩欧美国产wwwww| 久久99热国产| 亚洲免费成人av| 欧美一区二区三区播放老司机| 国产精华液一区二区三区| 亚洲人成伊人成综合网小说| 欧美三电影在线| 国产中文字幕一区| 亚洲宅男天堂在线观看无病毒| 日韩网站在线看片你懂的| av在线这里只有精品| 五月激情六月综合| 国产精品网站在线| 欧美挠脚心视频网站| 国产成人av电影在线| 无码av免费一区二区三区试看| 国产人久久人人人人爽| 7777女厕盗摄久久久| 99精品国产视频| 精品亚洲成a人| 亚洲18影院在线观看| 国产精品剧情在线亚洲| 日韩欧美在线网站| 欧美日韩欧美一区二区| 成a人片国产精品| 久久精品噜噜噜成人av农村| 亚洲一区二区视频在线观看| 久久精品欧美一区二区三区不卡| 欧美日韩国产乱码电影| av午夜一区麻豆| 国产成人福利片| 麻豆精品久久精品色综合| 亚洲国产欧美在线人成| 国产精品妹子av| 国产视频不卡一区| 日韩精品一区国产麻豆| 欧美精三区欧美精三区| 色婷婷一区二区| 3atv在线一区二区三区| 在线观看日韩高清av| 99r国产精品| 成人99免费视频| 成人爱爱电影网址| 成人午夜激情视频| 国产91精品欧美| 国产黑丝在线一区二区三区| 韩国一区二区三区| 久久国产精品99精品国产| 美女在线一区二区| 久久国产精品免费| 久久99久国产精品黄毛片色诱| 日韩精品欧美精品| 婷婷综合五月天| 日韩激情在线观看| 久久精品国产第一区二区三区| 日韩国产欧美视频| 热久久久久久久| 美女在线一区二区| 国产麻豆视频一区| 粗大黑人巨茎大战欧美成人| 暴力调教一区二区三区| 99国产精品久| 欧美网站大全在线观看| 51午夜精品国产| 久久婷婷综合激情| 国产精品国产成人国产三级| 亚洲日本成人在线观看| 一区二区三区在线播放| 水蜜桃久久夜色精品一区的特点| 日本午夜精品视频在线观看| 精品写真视频在线观看| 国产91清纯白嫩初高中在线观看| 国产成人午夜电影网| 一本色道a无线码一区v| 欧美吞精做爰啪啪高潮| 日韩欧美中文字幕制服| 国产精品久久久久久亚洲伦| 一区二区三区影院| 喷白浆一区二区| 不卡一区在线观看| 欧美美女激情18p| 国产亚洲va综合人人澡精品| 国产精品毛片大码女人| 亚洲成人第一页| 国产成人av资源| 欧美日本国产一区| 国产三级一区二区三区| 亚洲影院在线观看| 国产一区二区三区在线观看免费视频| av影院午夜一区| 日韩欧美综合在线| 成人欧美一区二区三区| 奇米精品一区二区三区在线观看| 国产91精品免费| 日韩免费高清av| 亚洲精品视频一区| 国产在线精品一区二区三区不卡 | 欧美精品1区2区3区| 国产日韩欧美激情|