亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? moment.htm

?? 國外專家做的求解LMI魯棒控制的工具箱,可以相對高效的解決LMI問題
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Language" content="en-us">
<title>YALMIP Example : Moment relaxations</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1251">
<meta content="Microsoft FrontPage 6.0" name="GENERATOR">
<meta name="ProgId" content="FrontPage.Editor.Document">
<link href="yalmip.css" type="text/css" rel="stylesheet">
<base target="_self">
</head>

<body leftMargin="0" topMargin="0">

<div align="left">

<table border="0" cellpadding="4" cellspacing="3" style="border-collapse: collapse" bordercolor="#000000" width="100%" align="left" height="100%">
  <tr>
    <td width="100%" align="left" height="100%" valign="top">
       <h2>Moment based relaxation of polynomials programs</h2>
    <hr noShade SIZE="1">
    <p>YALMIP comes with a built-in module for polynomial programming using 
    moment relaxations. This can be used for finding lower bounds on constrained 
    polynomial programs (inequalities and equalities, element-wise and semidefinite), and to extract the corresponding optimizers. The implementation is entirely based on high-level 
    YALMIP code, and can be somewhat inefficient for large problems (the 
    inefficiency would then show in the setup of the problem, not actually 
    solving the semidefinite resulting program). For very large problems, you might 
    want to check out the dedicated software package
    <a target="_blank" href="http://www.laas.fr/~henrion/software/gloptipoly/">Gloptipoly</a> 
	(the solution time will be the same, but the setup time might be reduced). 
    For the underlying theory of moment relaxations, the reader is referred to 
      <a href="readmore.htm#LASSERRE">[Lasserre]</a>.</p>
    <h3>Solving polynomial problems by relaxations</h3>
		<p>The following code calculates a lower bound on a concave quadratic 
    optimization problem. As you can see, the only difference compared to 
	solving the problem using a standard solver, such as
	<a href="solvers.htm#fmincon">fmincon</a> or <a href="solvers.htm#penbmi">
	penbmi</a>, is that we call <a href="reference.htm#solvemoment">solvemoment</a> instead of 
	<a href="reference.htm#solvesdp">solvesdp</a>.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>sdpvar x1 x2 x3
obj = -2*x1+x2-x3;
F = set(x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)+x3*(2*x3-13)+24&gt;0);
F = F + set(4-(x1+x2+x3)&gt;0);
F = F + set(6-(3*x2+x3)&gt;0);
F = F + set(x1&gt;0);
F = F + set(2-x1&gt;0);
F = F + set(x2&gt;0);
F = F + set(x3&gt;0);
F = F + set(3-x3&gt;0);
solvemoment(F,obj);
double(obj)
<font color="#000000">
 ans =</font></pre>
        <pre><font color="#000000">&nbsp;&nbsp;&nbsp;&nbsp; -6.0000</font></pre>
        </td>
      </tr>
    </table>
    <p>Notice that YALMIP does not recover variables by default, a fact showing up in the 
    difference between lifted variables and actual nonlinear variables (lifted 
    variables are the variables used in the semidefinite relaxation to model 
    nonlinear variables) The lifted variables can be obtained by using the 
    command <code>relaxdouble</code> . The quadratic 
    constraint above is satisfied in the lifted variables, but not in the true 
    variables, as the following code illustrates.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>relaxdouble(x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)+x3*(2*x3-13)+24)

 <font color="#000000">ans =

   23.2648</font></pre>
        <pre>double(x1*(4*x1-4*x2+4*x3-20)+x2*(2*x2-2*x3+9)+x3*(2*x3-13)+24)

<font color="#000000"> ans =

  -2.0000</font></pre>
        </td>
      </tr>
    </table>
       <p>An tighter relaxation can be obtained by using a higher order relaxation (the 
    lowest possible is used if it is not specified).</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>solvemoment(F,obj,[],2);
double(obj)

<font color="#000000"> ans =</font></pre>
        <pre><font color="#000000">&nbsp;&nbsp;&nbsp;&nbsp; -5.6593</font></pre>
        </td>
      </tr>
    </table>
    <p>The obtained bound can be used iteratively to improve the bound by adding 
    dynamically generated cuts.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>solvemoment(F+set(obj&gt;double(obj)),obj,[],2);
double(obj)

 <font color="#000000">ans =</font></pre>
        <pre><font color="#000000">&nbsp;&nbsp;&nbsp;&nbsp; -5.3870</font></pre>
        <pre>solvemoment(F+set(obj&gt;double(obj)),obj,[],2);
double(obj)

 <font color="#000000">ans =

     -5.1270</font></pre>
        </td>
      </tr>
    </table>
    <p>The known true minima, -4, is found in the fourth order relaxation.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>solvemoment(F,obj,[],4);
double(obj)

<font color="#000000"> ans =</font></pre>
        <pre><font color="#000000">&nbsp;&nbsp;&nbsp;&nbsp; -4.0000</font></pre>
        </td>
      </tr>
    </table>
    <p>The true global minima is however not recovered with the lifted variables, as we can see if we 
    check the current solution (still violates the nonlinear constraint).</p>
       <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>checkset(F)
<font color="#000000">
+++++++++++++++++++++++++++++++++++++++++++++++++++
| ID| Constraint   |         Type| Primal residual|
+++++++++++++++++++++++++++++++++++++++++++++++++++
| #1| Numeric value| Element-wise|        </font><font color="#FF0000">-0.88573</font><font color="#000000">|
| #2| Numeric value| Element-wise|           1.834|
| #3| Numeric value| Element-wise|           5.668|
| #4| Numeric value| Element-wise|           1.834|
| #5| Numeric value| Element-wise|         0.16599|
| #6| Numeric value| Element-wise|     2.0873e-006|
| #7| Numeric value| Element-wise|         0.33198|
| #8| Numeric value| Element-wise|           2.668|
+++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
        </td>
      </tr>
    </table>
       <h3>Extracting solutions</h3>
       <p>To extract a (or several) globally optimal solution, we need two output 
       arguments. The first output is a diagnostic structure (standard solution 
       structure from the semidefinite solver), the second output is the 
       (hopefully) extracted globally optimal solutions and the third output is 
       a data structure containing all data that was needed to extract the 
		solution.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>[sol,x] = solvemoment(F,obj,[],4);
x{1}
<font color="#000000">
ans =

    0.5000
    0.0000
    3.0000</font>
x{2}
<font color="#000000">
ans =

    2.0000
   -0.0000
    0.0000</font></pre>
        </td>
      </tr>
    </table>
       <p>We can easily check that these are globally optimal solutions since 
       they reach the lower bound -4 and satisfy the constraints (up to 
       numerical precision).</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>assign([x1;x2;x3],x{1});
double(obj)
<font color="#000000">ans =</font></pre>
        <pre><font color="#000000">   -4.0000</font></pre>
        <pre>checkset(F)
<font color="#000000">+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|      Constraint|                       Type|   Primal residual|
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Numeric value|   Element-wise (quadratic)|      -1.1034e-006|
|   #2|   Numeric value|               Element-wise|               0.5|
|   #3|   Numeric value|               Element-wise|                 3|
|   #4|   Numeric value|               Element-wise|               0.5|
|   #5|   Numeric value|               Element-wise|               1.5|
|   #6|   Numeric value|               Element-wise|        5.956e-007|
|   #7|   Numeric value|               Element-wise|                 3|
|   #8|   Numeric value|               Element-wise|       4.6084e-007|
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
        </td>
      </tr>
    </table>
       <h3>Polynomial semidefinite constraints</h3>
       <p>Nonlinear semidefinite constraints can be 
       added using exactly the same notation and syntax. The following example is taken from 
      <a href="readmore.htm#HENRIONLASSERRE">[D. Henrion, J. B. Lasserre]</a>.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>sdpvar x1 x2
obj = -x1^2-x2^2;
F = set([1-4*x1*x2 x1;x1 4-x1^2-x2^2]);
[sol,x] = solvemoment(F,obj,[],2);
assign([x1;x2],x{1});
double(obj)
<font color="#000000">ans =</font></pre>
        <pre><font color="#000000">   -4.00003</font></pre>
        <pre>checkset(F)
<font color="#000000">++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|      Constraint|              Type|   Primal residual|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Numeric value|   LMI (quadratic)|       -0.00034633|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
        </td>
      </tr>
    </table>
       <h3>Advanced features</h3>
       <p>A number of advanced features are available. We just briefly introduce 
       these here by a quick example where we refine the extracted solution 
       using a couple of Newton steps on an algebraic systems defining the global 
       solutions given the optimal moment matrices, and change the numerical tolerance in the extraction 
       algorithm. Finally, we calculate some different global solutions using 
       the optimal moment matrices. Please check the moment relaxation example in
       <a href="reference.htm#yalmipdemo">yalmipdemo</a> for details.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>sdpvar x1 x2
obj = -x1^2-x2^2;
F = set([1-4*x1*x2 x1;x1 4-x1^2-x2^2]);
ops = sdpsettings('moment.refine',5','moment.rceftol',1e-8);
[sol,xe,data] = solvemoment(F,obj,ops);
xopt1 = extractsolution(data,sdpsettings('moment.refine',0));
xopt2 = extractsolution(data,sdpsettings('moment.refine',1));
xopt3 = extractsolution(data,sdpsettings('moment.refine',10));
xopt4 = extractsolution(data,sdpsettings('moment.rceftol',1e-3,'moment.refine',5));</pre>
        </td>
      </tr>
    </table>
       <p>The moment relaxation solver can also be called using a more standard 
       YALMIP notation, by simply defining the solver as <code>'moment'</code>.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>sdpvar x1 x2
obj = -x1^2-x2^2;
F = set([1-4*x1*x2 x1;x1 4-x1^2-x2^2]);
sol = solvesdp(F,obj,sdpsettings('solver','moment','moment.order',2));
assign(sol.momentdata.x,sol.xoptimal{1});
double(obj)
<font color="#000000">ans =</font></pre>
        <pre><font color="#000000">   -4.00003</font></pre>
        <pre>checkset(F)
<font color="#000000">++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|      Constraint|              Type|   Primal residual|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Numeric value|   LMI (quadratic)|       -0.00034633|
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
        </td>
      </tr>
    </table>
       <p>
          <img border="0" src="demoicon.gif" width="16" height="16"> The 
		semidefinite programs rapidly grows when the number of variables and the 
		polynomial degree increase, so be careful when you model your problem.</p>
		<p>
          <img border="0" src="demoicon.gif" width="16" height="16"> The two 
		most useful practical tips when working semidefinite relaxations seem to 
		be to de-symmetrize your objective function, and compactify your 
		feasible region. These two tricks typically increase the likelihood that 
		you will be able to extract global solutions. By adding a perturbation 
		to the polynomial, symmetry is lost, which generically means that there 
		will not be infinitely many optima, and the extraction algorithm is more 
		likely to work. Most theory in moment relaxations assumes that the 
		feasible set is compact, and this is also affecting practical 
		performance. By adding redundant compactifying constraints, you 
		typically increase the likelihood of success. As an example, a simple 
		redundant constraint which often work well in practice is an upper bound on 
		the objective function based on a known feasible sub-optimal solution.</td>
  </tr>
</table>

<p>&nbsp;</div>

</body>

</html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩一卡二卡三卡| 国产婷婷色一区二区三区四区| 国产精品美女久久久久久久久 | 在线免费av一区| 亚洲国产三级在线| 欧美另类一区二区三区| 男男视频亚洲欧美| 久久久99免费| 91一区一区三区| 日韩精品成人一区二区在线| 日韩欧美激情四射| 国产**成人网毛片九色| 亚洲精品中文字幕乱码三区| 欧美电影在线免费观看| 国产日韩精品一区二区三区| 韩国三级中文字幕hd久久精品| 精品国产免费人成电影在线观看四季 | 美国十次综合导航| 亚洲国产高清aⅴ视频| 日本高清不卡aⅴ免费网站| 日本伊人午夜精品| 国产精品毛片a∨一区二区三区| 色婷婷狠狠综合| 美美哒免费高清在线观看视频一区二区 | 欧美一区二区三区白人| 国产成人精品影视| 五月天激情综合| 久久久久久久综合| 欧美中文字幕一区| 国产美女娇喘av呻吟久久| 亚洲欧美日韩中文播放| 欧美不卡激情三级在线观看| 99久久精品一区| 精品一区二区久久| 尤物av一区二区| 久久久久久99精品| 777欧美精品| 色婷婷亚洲综合| 国产精品888| 午夜欧美2019年伦理| 中国av一区二区三区| 在线观看91av| 成人精品gif动图一区| 老司机精品视频导航| 亚洲综合区在线| 亚洲丝袜制服诱惑| 日韩精品最新网址| 欧美日韩久久久久久| 91丨porny丨中文| 国产福利一区二区三区视频在线| 青青青爽久久午夜综合久久午夜| 一区二区三区四区在线| 国产三级精品三级在线专区| 日韩免费高清视频| 91精品欧美福利在线观看| 在线亚洲一区二区| 99re66热这里只有精品3直播| 国产一区二区影院| 久久99久国产精品黄毛片色诱| 午夜精品久久久久久久蜜桃app| 自拍偷拍亚洲激情| 国产精品欧美一区喷水| 日本一区二区免费在线观看视频| 日韩精品中文字幕在线不卡尤物 | 一区二区三区在线视频观看| 国产精品嫩草影院av蜜臀| 国产喂奶挤奶一区二区三区| 2023国产精品自拍| 久久综合给合久久狠狠狠97色69| 欧美一级在线免费| 日韩一级二级三级| 日韩午夜精品视频| 日韩一区二区三区免费看| 欧美丰满少妇xxxbbb| 欧美日韩精品电影| 91精品蜜臀在线一区尤物| 91麻豆精品国产91久久久久| 日韩一区二区三免费高清| 制服丝袜国产精品| 欧美一区二区三区影视| 精品欧美黑人一区二区三区| 26uuuu精品一区二区| 日本一区二区视频在线观看| 中文字幕第一区综合| 国产精品超碰97尤物18| 亚洲人成在线播放网站岛国| 一区二区三区日韩| 日韩精品一级二级| 开心九九激情九九欧美日韩精美视频电影 | 欧美一级午夜免费电影| 欧美videos大乳护士334| 精品国产乱码久久久久久夜甘婷婷 | 在线观看91av| 日韩欧美高清在线| 国产亚洲成av人在线观看导航 | 欧洲色大大久久| 欧美福利视频一区| 欧美成人欧美edvon| 中文字幕精品—区二区四季| 亚洲免费观看高清完整版在线 | 99国产精品久久久| 欧美色图激情小说| 日韩三级精品电影久久久| 久久影视一区二区| 亚洲欧美日韩中文字幕一区二区三区| 亚洲一区在线电影| 国精产品一区一区三区mba视频| 99久久婷婷国产精品综合| 欧美日韩国产免费一区二区| 2021中文字幕一区亚洲| 亚洲免费在线播放| 久久国产麻豆精品| 色综合久久久久久久久| 日韩欧美中文字幕一区| 亚洲欧美一区二区三区久本道91 | 国产夫妻精品视频| 欧美色成人综合| 国产日韩欧美精品在线| 亚洲一区二区三区四区五区黄 | 91福利在线免费观看| 欧美一区二区在线免费播放| 国产精品国产三级国产a| 亚洲动漫第一页| eeuss鲁片一区二区三区在线看| 欧美军同video69gay| 一色屋精品亚洲香蕉网站| 免费观看91视频大全| 色悠久久久久综合欧美99| 欧美精品一区二区三区久久久| 亚洲精品一二三区| 国产成人综合亚洲91猫咪| 在线电影一区二区三区| 亚洲视频一区二区免费在线观看| 人人精品人人爱| 色一区在线观看| 日本一区二区三区视频视频| 毛片一区二区三区| 欧美一a一片一级一片| 日韩美女啊v在线免费观看| 国产综合色在线| 日韩一区二区在线免费观看| 亚洲自拍偷拍麻豆| 91在线视频免费91| 欧美国产1区2区| 国产一区二区三区在线观看免费 | 日韩不卡一二三区| 欧洲精品在线观看| 亚洲日本在线a| 成人午夜电影小说| 国产欧美日韩精品一区| 国精品**一区二区三区在线蜜桃| 7777精品伊人久久久大香线蕉完整版 | 欧美色倩网站大全免费| 亚洲久草在线视频| 色偷偷久久一区二区三区| 国产精品无圣光一区二区| 国产成人av一区二区三区在线 | 色婷婷综合久久久久中文一区二区| 欧美激情综合五月色丁香| 国产成人av一区二区| 久久久久久久久久久99999| 国产资源在线一区| 国产亚洲精品免费| 国产jizzjizz一区二区| 亚洲国产岛国毛片在线| 成人av第一页| 国产精品不卡视频| 日本高清成人免费播放| 亚洲国产精品久久一线不卡| 欧美日韩色综合| 日韩电影免费一区| 精品对白一区国产伦| 极品少妇xxxx精品少妇| 国产网红主播福利一区二区| 国产成都精品91一区二区三| 国产精品乱人伦一区二区| 色综合久久中文字幕综合网| 一个色综合av| 91麻豆精品国产| 国产麻豆成人传媒免费观看| 国产日韩av一区| 色诱视频网站一区| 日本va欧美va精品发布| 久久久久高清精品| 99久久久免费精品国产一区二区| 一区二区三区小说| 337p亚洲精品色噜噜狠狠| 久久91精品国产91久久小草| 亚洲国产精品精华液ab| 欧美性猛交xxxx乱大交退制版| 日韩精彩视频在线观看| 久久影院午夜片一区| 91热门视频在线观看| 午夜电影一区二区三区| 久久久久99精品国产片| 91麻豆精东视频| 美女免费视频一区| 综合久久一区二区三区| 日韩一区二区免费高清| 成人av网站免费观看|