?? perceptron.m
字號:
function [test_targets, a] = Perceptron(train_patterns, train_targets, test_patterns, alg_param)
% Classify using the Perceptron algorithm (Fixed increment single-sample perceptron)
% Inputs:
% train_patterns - Train patterns
% train_targets - Train targets
% test_patterns - Test patterns
% alg_param - Either: Number of iterations, weights vector or [weights, number of iterations]
%
% Outputs
% test_targets - Predicted targets
% a - Perceptron weights
%
% NOTE: Works for only two classes.
[c, r] = size(train_patterns);
%Weighted Perceptron or not?
switch length(alg_param),
case r + 1,
%Ada boost form
p = alg_param(1:end-1);
max_iter = alg_param(end);
case {r,0},
%No parameter given
p = ones(1,r);
max_iter = 5000;
otherwise
%Number of iterations given
max_iter = alg_param;
p = ones(1,r);
end
train_patterns = [train_patterns ; ones(1,r)];
train_zero = find(train_targets == 0);
%Preprocessing
y = train_patterns;
y(:,train_zero)= -y(:,train_zero);
%Initial weights
a = sum(y')';
n = length(train_targets);
iter = 0;
while ((sum(a'*train_patterns.*(2*train_targets-1)<0)>0) & (iter < max_iter))
iter = iter + 1;
indice = 1 + floor(rand(1)*n);
if (a' * y(:,indice) <= 0)
a = a + p(indice)* y(:,indice);
end
end
if (iter == max_iter)&(length(alg_param)~= r + 1),
disp(['Maximum iteration (' num2str(max_iter) ') reached']);
end
%Classify test patterns
test_targets = a'*[test_patterns; ones(1, size(test_patterns,2))] > 0;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -