?? treemap.java
字號:
* algorithms. */ private static boolean colorOf(Entry p) { return (p == null ? BLACK : p.color); } private static Entry parentOf(Entry p) { return (p == null ? null: p.parent); } private static void setColor(Entry p, boolean c) { if (p != null) p.color = c; } private static Entry leftOf(Entry p) { return (p == null)? null: p.left; } private static Entry rightOf(Entry p) { return (p == null)? null: p.right; } /** From CLR **/ private void rotateLeft(Entry p) { Entry r = p.right; p.right = r.left; if (r.left != null) r.left.parent = p; r.parent = p.parent; if (p.parent == null) root = r; else if (p.parent.left == p) p.parent.left = r; else p.parent.right = r; r.left = p; p.parent = r; } /** From CLR **/ private void rotateRight(Entry p) { Entry l = p.left; p.left = l.right; if (l.right != null) l.right.parent = p; l.parent = p.parent; if (p.parent == null) root = l; else if (p.parent.right == p) p.parent.right = l; else p.parent.left = l; l.right = p; p.parent = l; } /** From CLR **/ private void fixAfterInsertion(Entry x) { x.color = RED; while (x != null && x != root && x.parent.color == RED) { if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { Entry y = rightOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == rightOf(parentOf(x))) { x = parentOf(x); rotateLeft(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); if (parentOf(parentOf(x)) != null) rotateRight(parentOf(parentOf(x))); } } else { Entry y = leftOf(parentOf(parentOf(x))); if (colorOf(y) == RED) { setColor(parentOf(x), BLACK); setColor(y, BLACK); setColor(parentOf(parentOf(x)), RED); x = parentOf(parentOf(x)); } else { if (x == leftOf(parentOf(x))) { x = parentOf(x); rotateRight(x); } setColor(parentOf(x), BLACK); setColor(parentOf(parentOf(x)), RED); if (parentOf(parentOf(x)) != null) rotateLeft(parentOf(parentOf(x))); } } } root.color = BLACK; } /** * Delete node p, and then rebalance the tree. */ private void deleteEntry(Entry p) { decrementSize(); // If strictly internal, copy successor's element to p and then make p // point to successor. if (p.left != null && p.right != null) { Entry s = successor (p); p.key = s.key; p.value = s.value; p = s; } // p has 2 children // Start fixup at replacement node, if it exists. Entry replacement = (p.left != null ? p.left : p.right); if (replacement != null) { // Link replacement to parent replacement.parent = p.parent; if (p.parent == null) root = replacement; else if (p == p.parent.left) p.parent.left = replacement; else p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion. p.left = p.right = p.parent = null; // Fix replacement if (p.color == BLACK) fixAfterDeletion(replacement); } else if (p.parent == null) { // return if we are the only node. root = null; } else { // No children. Use self as phantom replacement and unlink. if (p.color == BLACK) fixAfterDeletion(p); if (p.parent != null) { if (p == p.parent.left) p.parent.left = null; else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } } /** From CLR **/ private void fixAfterDeletion(Entry x) { while (x != root && colorOf(x) == BLACK) { if (x == leftOf(parentOf(x))) { Entry sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateLeft(parentOf(x)); sib = rightOf(parentOf(x)); } if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(rightOf(sib)) == BLACK) { setColor(leftOf(sib), BLACK); setColor(sib, RED); rotateRight(sib); sib = rightOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(rightOf(sib), BLACK); rotateLeft(parentOf(x)); x = root; } } else { // symmetric Entry sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) { setColor(sib, BLACK); setColor(parentOf(x), RED); rotateRight(parentOf(x)); sib = leftOf(parentOf(x)); } if (colorOf(rightOf(sib)) == BLACK && colorOf(leftOf(sib)) == BLACK) { setColor(sib, RED); x = parentOf(x); } else { if (colorOf(leftOf(sib)) == BLACK) { setColor(rightOf(sib), BLACK); setColor(sib, RED); rotateLeft(sib); sib = leftOf(parentOf(x)); } setColor(sib, colorOf(parentOf(x))); setColor(parentOf(x), BLACK); setColor(leftOf(sib), BLACK); rotateRight(parentOf(x)); x = root; } } } setColor(x, BLACK); } private static final long serialVersionUID = 919286545866124006L; /** * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e., * serialize it). * * @serialData The <i>size</i> of the TreeMap (the number of key-value * mappings) is emitted (int), followed by the key (Object) * and value (Object) for each key-value mapping represented * by the TreeMap. The key-value mappings are emitted in * key-order (as determined by the TreeMap's Comparator, * or by the keys' natural ordering if the TreeMap has no * Comparator). */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out the Comparator and any hidden stuff s.defaultWriteObject(); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) for (Iterator i = entrySet().iterator(); i.hasNext(); ) { Entry e = (Entry)i.next(); s.writeObject(e.key); s.writeObject(e.value); } } /** * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e., * deserialize it). */ private void readObject(final java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in the Comparator and any hidden stuff s.defaultReadObject(); // Read in size int size = s.readInt(); buildFromSorted(size, null, s, null); } /** Intended to be called only from TreeSet.readObject **/ void readTreeSet(int size, java.io.ObjectInputStream s, Object defaultVal) throws java.io.IOException, ClassNotFoundException { buildFromSorted(size, null, s, defaultVal); } /** Intended to be called only from TreeSet.addAll **/ void addAllForTreeSet(SortedSet set, Object defaultVal) { try { buildFromSorted(set.size(), set.iterator(), null, defaultVal); } catch (java.io.IOException cannotHappen) { } catch (ClassNotFoundException cannotHappen) { } } /** * Linear time tree building algorithm from sorted data. Can accept keys * and/or values from iterator or stream. This leads to too many * parameters, but seems better than alternatives. The four formats * that this method accepts are: * * 1) An iterator of Map.Entries. (it != null, defaultVal == null). * 2) An iterator of keys. (it != null, defaultVal != null). * 3) A stream of alternating serialized keys and values. * (it == null, defaultVal == null). * 4) A stream of serialized keys. (it == null, defaultVal != null). * * It is assumed that the comparator of the TreeMap is already set prior * to calling this method. * * @param size the number of keys (or key-value pairs) to be read from * the iterator or stream. * @param it If non-null, new entries are created from entries * or keys read from this iterator. * @param it If non-null, new entries are created from keys and * possibly values read from this stream in serialized form. * Exactly one of it and str should be non-null. * @param defaultVal if non-null, this default value is used for * each value in the map. If null, each value is read from * iterator or stream, as described above. * @throws IOException propagated from stream reads. This cannot * occur if str is null. * @throws ClassNotFoundException propagated from readObject. * This cannot occur if str is null. */ private void buildFromSorted(int size, Iterator it, java.io.ObjectInputStream str, Object defaultVal) throws java.io.IOException, ClassNotFoundException { this.size = size; root = buildFromSorted(0, 0, size-1, computeRedLevel(size), it, str, defaultVal); } /** * Recursive "helper method" that does the real work of the * of the previous method. Identically named parameters have * identical definitions. Additional parameters are documented below. * It is assumed that the comparator and size fields of the TreeMap are * already set prior to calling this method. (It ignores both fields.) * * @param level the current level of tree. Initial call should be 0. * @param lo the first element index of this subtree. Initial should be 0. * @param hi the last element index of this subtree. Initial should be * size-1. * @param redLevel the level at which nodes should be red. * Must be equal to computeRedLevel for tree of this size. */ private static Entry buildFromSorted(int level, int lo, int hi, int redLevel, Iterator it, java.io.ObjectInputStream str, Object defaultVal) throws java.io.IOException, ClassNotFoundException { /* * Strategy: The root is the middlemost element. To get to it, we * have to first recursively construct the entire left subtree, * so as to grab all of its elements. We can then proceed with right * subtree. * * The lo and hi arguments are the minimum and maximum * indices to pull out of the iterator or stream for current subtree. * They are not actually indexed, we just proceed sequentially, * ensuring that items are extracted in corresponding order. */ if (hi < lo) return null; int mid = (lo + hi) / 2; Entry left = null; if (lo < mid) left = buildFromSorted(level+1, lo, mid - 1, redLevel, it, str, defaultVal); // extract key and/or value from iterator or stream Object key; Object value; if (it != null) { // use iterator if (defaultVal==null) { Map.Entry entry = (Map.Entry) it.next(); key = entry.getKey(); value = entry.getValue(); } else { key = it.next(); value = defaultVal; } } else { // use stream key = str.readObject(); value = (defaultVal != null ? defaultVal : str.readObject()); } Entry middle = new Entry(key, value, null); // color nodes in non-full bottommost level red if (level == redLevel) middle.color = RED; if (left != null) { middle.left = left; left.parent = middle; } if (mid < hi) { Entry right = buildFromSorted(level+1, mid+1, hi, redLevel, it, str, defaultVal); middle.right = right; right.parent = middle; } return middle; } /** * Find the level down to which to assign all nodes BLACK. This is the * last `full' level of the complete binary tree produced by * buildTree. The remaining nodes are colored RED. (This makes a `nice' * set of color assignments wrt future insertions.) This level number is * computed by finding the number of splits needed to reach the zeroeth * node. (The answer is ~lg(N), but in any case must be computed by same * quick O(lg(N)) loop.) */ private static int computeRedLevel(int sz) { int level = 0; for (int m = sz - 1; m >= 0; m = m / 2 - 1) level++; return level; }}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -