?? lms2.m
字號(hào):
%LMS2 Problem 1.1.1.1.2.1
%
% 'ifile.mat' - input file containing:
% I - members of ensemble
% K - iterations
% sigmax - standard deviation of input
% Wo - coefficient vector of plant
% sigman - standard deviation of measurement noise
% mu - convergence factor
% b - bits in decimal part
%
% 'ofile.mat' - output file containing:
% ind - sample indexes
% MSE - mean-square error
% MSNDW - mean-square norm of coefficient-error vector
clear all % clear memory
load ifile; % read input variables
L=length(Wo); % plant and filter length
N=L-1; % plant and filter order
MSE=zeros(K,1); % prepare to accumulate MSE*I
MSNDW=zeros(K,1); % prepare to accumulate MSNDW*I
for i=1:I, % ensemble
X=zeros(L,1); % initial memory
W=zeros(L,1); % initial coefficient vector
x=randn(K,1)*sigmax; % input
n=randn(K,1)*sigman; % measurement noise
for k=1:K, % iterations
X=[x(k)
X(1:N)]; % new input vector
d=Wo'*X; % desired signal sample
y=W'*X; % output sample
e=d+n(k)-y;
e=qround(e,b); % error sample
W=W+2*mu*e*X;
W=qround(W,b); % new coefficient vector
MSE(k)=MSE(k)+e^2; % accumulate MSE*I
MSNDW(k)=MSNDW(k)+norm((Wo-W),2)^2;
% accumulate MSNDW*I
end
end
ind=0:(K-1); % sample indexes
MSE=MSE/I; % calculate MSE
MSNDW=MSNDW/I; % calculate MSNDW
save ofile ind MSE MSNDW; % write output variables
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -