?? inverse.f90
字號:
module LinearAlgebra
implicit none
contains
! 求逆矩陣
subroutine inverse(A,IA)
implicit none
real :: A(:,:), IA(:,:)
real, allocatable :: B(:,:)
integer :: i,j,N
N = size(A,1)
allocate(B(N,N))
! 先把IA設定成單位矩陣
forall(i=1:N,j=1:N,i==j) IA(i,j)=1.0
forall(i=1:N,j=1:N,i/=j) IA(i,j)=0.0
! 保存原先的矩陣A, 使用B來計算
B=A
! 把B化成對角線矩陣(除了對角線外,都為0)
call Upper(B,IA,N) ! 先把B化成上三角矩陣
call Lower(B,IA,N) ! 再把B化成下三角矩陣
! 求解
forall(i=1:N) IA(i,:)=IA(i,:)/B(i,i)
return
end subroutine
! 輸出矩陣的子程序
subroutine output(matrix)
implicit none
real :: matrix(:,:)
integer :: m,n,i
character(len=20) :: for='(??(1x,f6.3))'
m = size(matrix,1)
n = size(matrix,2)
! 用字符串來設定輸出格式
write( FOR(2:3), '(I2)' ) N
do i=1,N
write( *, FMT=FOR ) matrix(i,:)
end do
return
end subroutine output
! 求上三角矩陣的子程序
subroutine Upper(M,S,N)
implicit none
integer :: N
real :: M(N,N)
real :: S(N,N)
integer :: I,J
real :: E
do I=1,N-1
do J=I+1,N
E=M(J,I)/M(I,I)
M(J,I:N)=M(J,I:N)-M(I,I:N)*E
S(J,:)=S(J,:)-S(I,:)*E
end do
end do
return
end subroutine Upper
! 求下三角矩陣的子程序
subroutine Lower(M,S,N)
implicit none
integer :: N
real :: M(N,N)
real :: S(N,N)
integer :: I,J
real :: E
do I=N,2,-1
do J=I-1,1,-1
E=M(J,I)/M(I,I)
M(J,1:N)=M(J,1:N)-M(I,1:N)*E
S(J,:)=S(J,:)-S(I,:)*E
end do
end do
return
end subroutine Lower
end module
! 求解聯立式
program main
use LinearAlgebra
implicit none
integer, parameter :: N=3 ! Size of Matrix
real :: A(N,N) = (/ 1,2,3,4,5,6,7,8,8 /)
real :: IA(N,N)
integer :: i
write(*,*) "原矩陣"
call output(A)
call inverse(A,IA)
write(*,*) "逆矩陣"
call output(IA)
stop
end program
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -