?? cpdenoise.m
字號:
function [clean,bb,st] = CPDeNoise(x,D,bell)
% CPDeNoise -- De-Noising in an adaptively chosen CP basis
% Usage
% [clean,bb,st] = CPDeNoise(x,D,bell)
% Inputs
% x 1-d signal to be de-noised.
% D maximum allowed depth of basis tree
% bell bell for time splitting
% Outputs
% clean cleaned signal
% bb basis tree naming basis in which de-noising was done
% st stat tree: statistics driving basis search
%
% Description
% 1. Assumes noise level == 1
% 2. Uses Stein Unbiased Estimate of risk to evaluate basis
% 3. Uses Coifman-Wickerhauser Best Basis algorithm to select
% best basis
%
% See Also
% WaveShrink, WPDeNoise
%
[n,J] = dyadlength(x);
thr = sqrt(2 .* log( n .* J) );
%
% Find Best Basis for De-Noising
%
cp = CPAnalysis(x,D,bell);
st = CalcStatTree(cp,'SURE',thr);
[bb,vt] = BestBasis(st,D);
%
% Apply thresholding in Best Basis
%
dirtycoef = UnpackBasisCoeff(bb,cp);
cleancoef = HardThresh(dirtycoef,thr);
%
% Transform back to time domain
%
cleancp = PackBasisCoeff(bb,cp,cleancoef);
clean = CPSynthesis(bb,cleancp,bell);
%
% Copyright (c) 1993-5. Jonathan Buckheit, David Donoho and Iain Johnstone
%
%% Part of Wavelab Version 850% Built Tue Jan 3 13:20:39 EST 2006% This is Copyrighted Material% For Copying permissions see COPYING.m% Comments? e-mail wavelab@stat.stanford.edu
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -