?? transmitterclass.cpp
字號:
free( *(TxConfiguration.DPCCHforCPCHScrambleCodes + k) );
*(TxConfiguration.DPCCHforCPCHScrambleCodes + k) = NULL;
}
if (TxConfiguration.NumDPCCHforCPCH > 0)
{
free(TxConfiguration.DPCCHforCPCHScrambleCodes);
TxConfiguration.DPCCHforCPCHScrambleCodes = NULL;
}
for (k=0;k<TxConfiguration.NumOtherDPCH; k++)
{
free( *(TxConfiguration.OtherScrambleCodes + k) );
*(TxConfiguration.OtherScrambleCodes + k) = NULL;
}
if (TxConfiguration.NumOtherDPCH > 0)
{
free(TxConfiguration.OtherScrambleCodes);
TxConfiguration.OtherScrambleCodes = NULL;
}
free(TxConfiguration.P_CCPCHScramCode);
TxConfiguration.P_CCPCHScramCode = NULL;
free(TxConfiguration.P_CPICHScrambleCode);
TxConfiguration.P_CPICHScrambleCode = NULL;
free(TxConfiguration.PDSCHScramCode);
TxConfiguration.PDSCHScramCode = NULL;
for (k=0;k<TxConfiguration.NumS_CPICH;k++)
{
free( *(TxConfiguration.S_CPICHScramCodes + k) );
*(TxConfiguration.S_CPICHScramCodes + k) = NULL;
}
if (TxConfiguration.NumS_CPICH > 0)
{
free(TxConfiguration.S_CPICHScramCodes);
TxConfiguration.S_CPICHScramCodes = NULL;
}
free(TxConfiguration.S_CCPCHScramCode);
TxConfiguration.S_CCPCHScramCode = NULL;
//Pointers to channel codes point to portions of arrays that were
//allocated (and will be de-allocated) elsewhere.
//So just set pointers to NULL
if (TxConfiguration.NumOtherDPCH > 0) TxConfiguration.OtherChannelCodes = NULL;
if (TxConfiguration.NumDPCCHforCPCH > 0) TxConfiguration.DPCCHforCPCHChanCodes = NULL;
if (TxConfiguration.NumS_CPICH > 0) TxConfiguration.S_CPICHChanCodes = NULL;
free(P_CPICHptr);
P_CPICHptr = NULL;
free(P_SCHptr);
P_SCHptr = NULL;
free(S_SCHptr);
S_SCHptr = NULL;
free(Gains.S_CPICH);
Gains.S_CPICH = NULL;
free(Timing.S_CPICH);
Timing.S_CPICH = NULL;
free(RelativeOffset.S_CPICH);
RelativeOffset.S_CPICH = NULL;
if (TxConfiguration.NumDPCCHforCPCH > 0)
{
free(Gains.DPCHforCPCH);
free(Timing.DPCHforCPCH);
free(RelativeOffset.DPCHforCPCH);
}
if (TxConfiguration.NumOtherDPCH > 0)
{
free(Gains.OtherDPCH);
free(Timing.OtherDPCH);
free(RelativeOffset.OtherDPCH);
}
if (TxConfiguration.NumS_CPICH> 0)
{
free(Gains.S_CPICH);
free(Timing.S_CPICH);
free(RelativeOffset.S_CPICH);
}
if (CurrentFrame.Chips != NULL)
{
free(CurrentFrame.Chips);
CurrentFrame.Chips = NULL;
}
if (CurrentFrame.DataBits != NULL)
{
free(CurrentFrame.DataBits);
CurrentFrame.DataBits = NULL;
}
if (NextFrame.Chips != NULL)
{
free(NextFrame.Chips);
NextFrame.Chips = NULL;
}
if (NextFrame.DataBits != NULL)
{
free(NextFrame.DataBits);
NextFrame.DataBits = NULL;
}
if (PreviousFrame.Chips != NULL)
{
free(PreviousFrame.Chips);
PreviousFrame.Chips = NULL;
}
if (PreviousFrame.DataBits != NULL)
{
free(PreviousFrame.DataBits);
PreviousFrame.DataBits = NULL;
}
}
ComplexNumber *TransmitterClass::ScrambleCode(unsigned N)
/*****************************************************************************************************
/ComplexNumber *ScrambleSequence(unsigned N)
/
/ Copyright 2002 The Mobile and Portable Radio Research Group
/
/This function generages the sequence that once can then use to generate all of the downlink spreading
/codes. The sequence is generated in accordance to the algorithm specified in clause 5.2.2 of
/ETSI TS 125 213 V3.2.0 (2000-03). The function generates this code by using the implementation
/that is pictorially described in figure 10 of the aforementioned specificatoin.
/This implemtation takes advantage of two shift registers, which this function emulates via
/circular buffers. The first circular buffer, X, is initiallized by setting all the values, except X(0), \
/to 0. X(0) is set to 1. The second circular buffer Y is initiallized by setting all elements to 1.
/
/The function then performs the following operation using modulo 2 arithmetic
/ x(n+18) = x(n+7) + x(n)
/ y(n+18) = y(n+10) + y(n+7) + y(n+5) + y(n)
/ v(n) = x(n+4) + x(n+6) + x(n+15)
/ w(n) = y(n+5) + y(n+6) + y(n+8) + y(n+9) + y(n+10) + y(n+11) + y(n+12) + y(n+13) + y(n+14) + y(n+15)
/ ClongI = x(n) + y(n)
/ ClongQ = w(n) + v(n)
/ Scramble_long(n) = ClongI + j*ClongQ;
/
/Returns Pointer to an aray of length 50000 that contains the scramble code
/
/Parameters
/ N unsigned Scrambling code number
/******************************************************************************************************/
{
ComplexNumber *Sequence,*TempSequence;
unsigned short *x_buf_front,*x_buf_end; //Points to the begining and end of the X circular buffer
unsigned short *y_buf_front,*y_buf_end; //Points to the begining and end of the Y circular buffer
unsigned short *x0; //Points to x(n)
unsigned short *x4; //Points to x(n+4)
unsigned short *x6; //Points to x(n+6)
unsigned short *x7; //Points to x(n+7)
unsigned short *x15; //Points to x(n+15)
unsigned short *x18; //Points to x(n+18)
unsigned short *y0; //Points to y(n)
unsigned short *y5; //Points to y(n+5)
unsigned short *y6; //Points to y(n+6)
unsigned short *y7; //Points to y(n+7)
unsigned short *y8; //Points to y(n+8)
unsigned short *y9; //Points to y(n+9)
unsigned short *y10; //Points to y(n+10)
unsigned short *y11; //Points to y(n+11)
unsigned short *y12; //Points to y(n+12)
unsigned short *y13; //Points to y(n+13)
unsigned short *y14; //Points to y(n+14)
unsigned short *y15; //Points to y(n+15)
unsigned short *y18; //Points to y(n+18)
unsigned short *y_temp; //Temporary Pointer
unsigned short x1_hold; //Stores x(n)
unsigned short y1_hold; //Stores y(n)
unsigned short v_hold; //Stores the result of x(n+4) + x(n+7) + x(n+18)
unsigned short w_hold; //Stores the result of y(n+4) + y(n+6) + y(n+17)
unsigned k;
// FILE *fp;
/* Will shift registers using two circular buffers:
one for the "x" sequence and one for the "y" sequence
*/
//Allocate buffers
if ((x_buf_front = (unsigned short *) calloc(ARRAY_LENGTH,sizeof(unsigned short)))==NULL)
{
printf("\nx_buf_front array not allocated!--exiting\n");
exit(-2);
}
if ((y_buf_front = (unsigned short *) calloc(ARRAY_LENGTH,sizeof(unsigned short)))==NULL)
{
printf("\n y_buf_front array not allocated!--exiting\n");
exit(-2);
}
//Assign pointers to the end of buffer
x_buf_end=x_buf_front+BUFFER_LENGTH;
y_buf_end=y_buf_front+BUFFER_LENGTH;
//Initialize buffers
/* The X buffer is initialized to 0, with the exception
/ of X(0), which is initialized to 1*/
*x_buf_front = 1;
//Initialize the "y" buffer by setting all 18 elements equal to 1
y_temp=y_buf_front;
for (k=0;k<BUFFER_LENGTH;k++) *y_temp++ = 1;
//We now implement the sequence computation.
//First initialize the locations of all pointers
//Pointers for "x" buffer
x0=x_buf_front; //x(n)
x4=x_buf_front+4; //x(n+4)
x6=x_buf_front+6; //x(n+6)
x7=x_buf_front+7; //x(n+7)
x15=x_buf_front+15; //x(n+14)
x18=x_buf_front; //x(n+18)
//Pointers for "y" buffer
y0=y_buf_front; //y(n)
y5=y_buf_front+5; //y(n+5)
y6=y_buf_front+6; //y(n+6)
y7=y_buf_front+7; //y(n+7)
y8=y_buf_front+8; //y(n+8)
y9=y_buf_front+9; //y(n+9)
y10=y_buf_front+10; //y(n+10)
y11=y_buf_front+11; //y(n+11)
y12=y_buf_front+12; //y(n+12)
y13=y_buf_front+13; //y(n+13)
y14=y_buf_front+14; //y(n+14)
y15=y_buf_front+15; //y(n+15)
y18=y_buf_front; //y(n+18)
//Create complex array to store sequence output
Sequence = (ComplexNumber *) calloc(SEQUENCE_LENGTH,sizeof(ComplexNumber));
TempSequence = Sequence;
//***********************************************************
// ScrambleCode.real(k) = X(k+N) ^ Y(k)
// SxrambleCode.imag(k) = V(k+N) ^ W(k) = X(k+131072+N) ^ Y(k+131072)
//
// Note that the X sequence must LEAD the Y sequence by N (the scramble code)
// We accomplish this by generating the first N elements of the sequence
// (i.e., X(0), X(1), ..., X(N-1) ).
//This is accomplished in the following loop
for (k=0; k<N; k++)
{
x1_hold = *x0; //Shift register output for "x" sequence
//Perform Shift register operations
*x18 = *x0++ ^ *x7++; //x(n+18) = x(n) + x(n+7)
v_hold = ((*x4++ ^ *x6++) ^ *x15++); //z(n) = x(n+4) + x(n+6) + x(n+15)
x18++;
//Check for pointer overflow
if (x15 == x_buf_end) x15 = x_buf_front;
else if (x7 == x_buf_end) x7 = x_buf_front;
else if (x6 == x_buf_end) x6 = x_buf_front;
else if (x4 == x_buf_end) x4 = x_buf_front;
else if (x0 == x_buf_end)
{
x0 = x_buf_front;
x18 = x_buf_front;
}
}
for (k=0;k<SEQUENCE_LENGTH;k++)
{
x1_hold = *x0; //Shift register output for "x" sequence
y1_hold = *y0; //Shift register output for "y" sequence
//Perform Shift register operations
*x18 = *x0++ ^ *x7++; //x(n+18) = x(n) + x(n+7)
*y18 = (((*y0++ ^ *y5) ^ *y7++) ^ *y10); //y(n+18) = y(n) + y(n+5) + y(n+7) + y(n+10)
v_hold = ((*x4++ ^ *x6++) ^ *x15++); //z(n) = x(n+4) + x(n+6) + x(n+15)
//w(n) = y(n+5) + y(n+6) + y(n+8) + y(n+9) + y(n+10) + y(n+11) + y(n+12) + y(n+13) + y(n+14) + y(n+15)
w_hold = (((((((((*y5++ ^ *y6++) ^ *y8++) ^ *y9++) ^ *y10++) ^ *y11++) ^ *y12++) ^ *y13++) ^ *y14++) ^ *y15++);
x18++;
y18++;
//Create output for c_long_1 and c_long_2 sequences
// convert a "0" to +1 and a "1" to -1
TempSequence -> real = (1 - 2 * (short int) (x1_hold ^ y1_hold));
TempSequence -> imaginary = (1 - 2 * (short int) (v_hold ^ w_hold));
TempSequence++;
//Check for pointer overflow
if (x15 == x_buf_end) x15 = x_buf_front;
else if (x7 == x_buf_end) x7 = x_buf_front;
else if (x6 == x_buf_end) x6 = x_buf_front;
else if (x4 == x_buf_end) x4 = x_buf_front;
else if (x0 == x_buf_end)
{
x0 = x_buf_front;
x18 = x_buf_front;
}
if (y15 == y_buf_end) y15 = y_buf_front;
else if (y14 == y_buf_end) y14 = y_buf_front;
else if (y13 == y_buf_end) y13 = y_buf_front;
else if (y12 == y_buf_end) y12 = y_buf_front;
else if (y11 == y_buf_end) y11 = y_buf_front;
else if (y10 == y_buf_end) y10 = y_buf_front;
else if (y9 == y_buf_end) y9 = y_buf_front;
else if (y8 == y_buf_end) y8 = y_buf_front;
else if (y7 == y_buf_end) y7 = y_buf_front;
else if (y6 == y_buf_end) y6 = y_buf_front;
else if (y5 == y_buf_end) y5 = y_buf_front;
else if (y0 == y_buf_end)
{
y0 = y_buf_front;
y18 = y_buf_front;
}
}
// Used for debugging purposes
/*
fp=fopen("sequencenew.txt","w");
TempSequence=Sequence;
for (k=0;k<SEQUENCE_LENGTH;k++)
{
fprintf( fp,"%d \t %f \t %f \n",k,TempSequence->real,TempSequence->imaginary);
TempSequence++;
}
fclose(fp);*/
free(x_buf_front);
free(y_buf_front);
return (Sequence);
}
int * TransmitterClass::OVSF_Code(unsigned SF)
/*****************************************************************************************************
/int * TransmitterClass::OVSF_Code(unsigned SF)
/
/ Copyright 2002 The Mobile and Portable Radio Research Group
/
/This function generates the all of the OVSF codes for the given spreading factor. The codes are
/generated in accordance with the algorithms specified in ETSI Ts 125 213 V3.2.0 (2000-03). The
/number of codes that are generated is equal to the input paramter, which must be a power of 2. For
/example, if the input is 4, then for codes are generated. Further, they are stored in an integer array
/in the order that they were generated.
/
/Returns Pointer to an aray of length SF^2 that contains all of the OVSF codes
/
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -