亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? changes

?? 基于java的3d開(kāi)發(fā)庫(kù)。對(duì)坐java3d的朋友有很大的幫助。
??
字號(hào):
/***************************************************************************  **************************************************************************                  Spherical Harmonic Transform Kit 2.7       Contact: Peter Kostelec            geelong@cs.dartmouth.edu       Copyright 1997-2003  Sean Moore, Dennis Healy,                        Dan Rockmore, Peter Kostelec     Copyright 2004  Peter Kostelec, Dan Rockmore         SpharmonicKit is free software; you can redistribute it and/or modify     it under the terms of the GNU General Public License as published by     the Free Software Foundation; either version 2 of the License, or     (at your option) any later version.       SpharmonicKit is distributed in the hope that it will be useful,     but WITHOUT ANY WARRANTY; without even the implied warranty of     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the     GNU General Public License for more details.       You should have received a copy of the GNU General Public License     along with this program; if not, write to the Free Software     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.       Commercial use is absolutely prohibited.     See the accompanying LICENSE file for details.    ************************************************************************  ************************************************************************/==================================================February, 2004: SpharmonicKit 2.7 releasedAnother (and hopefully last) scaling discrepancy corrected.A user has identified another scaling error, this timein the TransMult() routine which is used for convolutions.The coefficients were not being weighted correctly prior toperforming the inverse spherical transform.In the original Driscoll-Healy paper, in Theorem 1 it is provedthat, for two function f and h defined on the sphere, thetransform of their convolution is a pointwise product ofthe transforms(f*h)^(l,m) = 2*pi*sqrt(4*pi/(2*l+1)) f^(l,m) * h^(l,0)where ^ denotes the Fourier coefficient of degree l, order m.In a nutshell, we forgot the 2*pi*sqrt(4*pi/(2*l+1)) in thecode.We thank the user for identifying this error, and providing thefollowing correction.The main for-loops in TransMult() used to be************************************************  for (m=0; m<bw; m++) {    for (l=m; l<bw; l++) {      compmult(rfiltercoeffs[l], ifiltercoeffs[l],	       rdptr[l-m], idptr[l-m],	       rrptr[l-m], irptr[l-m]);    }    rdptr += bw-m; idptr += bw-m;    rrptr += bw-m; irptr += bw-m;  }  for (m=bw+1; m<size; m++) {    for (l=size-m; l<bw; l++){      compmult(rfiltercoeffs[l], ifiltercoeffs[l],	       rdptr[l-size+m], idptr[l-size+m],	       rrptr[l-size+m], irptr[l-size+m]);    }    rdptr += m-bw; idptr += m-bw;    rrptr += m-bw; irptr += m-bw;  }************************************************The corrected version is ************************************************  for (m=0; m<bw; m++) {    for (l=m; l<bw; l++) {      compmult(rfiltercoeffs[l], ifiltercoeffs[l],	       rdptr[l-m], idptr[l-m],	       rrptr[l-m], irptr[l-m]);      rrptr[l-m] *= sqrt(4*M_PI/(2*l+1));      irptr[l-m] *= sqrt(4*M_PI/(2*l+1));    }    rdptr += bw-m; idptr += bw-m;    rrptr += bw-m; irptr += bw-m;  }  for (m=bw+1; m<size; m++) {    for (l=size-m; l<bw; l++){      compmult(rfiltercoeffs[l], ifiltercoeffs[l],	       rdptr[l-size+m], idptr[l-size+m],	       rrptr[l-size+m], irptr[l-size+m]);      rrptr[l-size+m] *= sqrt(4*M_PI/(2*l+1));      irptr[l-size+m] *= sqrt(4*M_PI/(2*l+1));    }    rdptr += m-bw; idptr += m-bw;    rrptr += m-bw; irptr += m-bw;  }************************************************==================================================July, 2003: SpharmonicKit 2.6 releasedScaling discrepancy corrected.While the code is internally consistent, as far as normalizations areconcerned, a user recently pointed out to us that our scaling of theY_lm's differs from the usual Y_lm's.If, for example, one sampled the spherical harmonic Y_1^0 on thesphere in Mathematica (tm), and then used SpharmonicKit to takeits forward spherical transform, the computed coefficientwould not be 1, but rather 1/(2*sqrt(PI)). And if one sampledY_1^1, the computed coefficient would 1/sqrt(2*PI), and not 1.So, depending on the order of the spherical transform, we were missingeither a 2*sqrt(PI), or a sqrt(2*PI). We are grateful for the userpointing this out to us, and apologize for any inconvenience this mayhave caused. The spherical transform routines, including those havingto do with convolution, have been corrected in version 2.6.To detail the fix:A) Forward Spherical TransformTaking the forward spherical transform, as defined in version 2.5,the computed coefficients need to be scaled as follows: - multiply all order m = 0 coefficients by 2*sqrt(pi) - multiply all order m != 0 coefficients by sqrt(2*pi)For example, if the real and imaginary parts of the computedcoefficients are in the arrays "rresult" and "iresult", do somethinglike this:    for(m=0;m<bw;m++)      for(l=m;l<bw;l++){        dummy = seanindex(m,l,bw);        if ( m == 0 )          {            rresult[dummy] *= (2.*sqrt(pi));            iresult[dummy] *= (2.*sqrt(pi));          }        else          {            rresult[dummy] *= (sqrt(2.*pi));            iresult[dummy] *= (sqrt(2.*pi));          }        /* now for the negative-order coefficients */        if ( m != 0 )          {            dummy = seanindex(-m,l,bw);            rresult[dummy] *= (sqrt(2.*pi));            iresult[dummy] *= (sqrt(2.*pi));          }      }B) Inverse Spherical TransformTaking the inverse spherical transform, as defined in version 2.5,the computed coefficients need to be scaled as follows, *BEFORE*applying the inverse spherical transform: - divide all order m = 0 coefficients by 2*sqrt(pi) - divide all order m != 0 coefficients by sqrt(2*pi)For example, if the real and imaginary parts of the computed coefficientsare in the arrays "rcoeffs" and "icoeffs", then you should do somethinglike this:    for(m=0;m<bw;m++)      for(l=m;l<bw;l++){        dummy = seanindex(m,l,bw);        if ( m == 0 )          {            rcoeffs[dummy] /= (2.*sqrt(pi));            icoeffs[dummy] /= (2.*sqrt(pi));          }        else          {            rcoeffs[dummy] /= (sqrt(2.*pi));            icoeffs[dummy] /= (sqrt(2.*pi));          }        /* now for the negative-order coefficients */        if ( m != 0 )          {            dummy = seanindex(-m,l,bw);            rcoeffs[dummy] /= (sqrt(2.*pi));            icoeffs[dummy] /= (sqrt(2.*pi));          }      }To save some system calls to "sqrt", replace sqrt(2*pi), 2*sqrt(pi),1/sqrt(2*pi) and 1/2*sqrt(pi) by their numerical equivalents and makeeverything a (quicker) multiply.=========================================July, 1998: SpharmonicKit 2.5 releasedThis version of the Kit is designed to use a slight variationof FFTPACK, the freely available collection of FORTRAN subprogramsfor "... calculating fast Fourier transforms for both complex andreal periodic sequences and certain other symmetric sequences ...."To be precise, the Kit now uses slight modifications of the FFTand DCT routines found in FFTPACK. These routines are considerablymore efficient than those provided in SpharmonicKit 2 (and are stillincluded in this current release). Details can be found in HOWTO_FFTPACK.Making the reasonable assumption that the input data will alwaysbe strictly real, the fft-portions of all the spherical transformswere modified to take full advantage of the symmetries that thisassumption brings. This is only in the case when FFTPACK is used.Up to now, the symmetries were only partially and not fullyexploited.Also redesigned some of the documentation.==========================================March, 1998: SpharmonicKit 2 releasedIn the original release of the Kit, all the Legendre transforms(and code relying on Legendre transforms) were based on theseminaive and naive algorithms. Code based on the work of Driscolland Healy is introduced in this release. As an extremely brief"what's new in this release" ...In this latest edition of the Kit, the following arethe new major additions:Forward Legendre transforms: 1) a slight variation of the basic Driscoll-Healy (DH)    Legendre transform algorithm; for bw = 16 through    1024 (must be power of 2) 2) the bounded DH-Mid algorithm; for bw = 16 through    1024 (must be power of 2) 3) the simple-split and hybrid algorithms; for bw = 16    through 1024 (must be power of 2)Forward Spherical Transforms: 1) a hybrid spherical transform (based on the hybrid    Legendre transform) that precomputes in memory all    necessary Legendre polynomial cosine transforms    prior to transforming; for bw = 64 through 512 2) a hybrid spherical transform that reads the    precomputed data off disk; for bw = 16 through 1024 3) a spherical convolution routine which uses the hybrid    spherical transform in the forward direction and    seminaive algorithm in the reverse; precomputes    in memory prior to transforming; for bw = 64 through    512 4) a spherical convolution routine which uses the hybrid    spherical transform in the forward direction and    seminaive algorithm in the reverse; reads the precomputed    data off disk; for bw = 16 through 1024The seminaive spherical algorithms (forward and reverse)were modified and versions which read precomputed dataoff disk are provided, as well.

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩一区二区三区观看| 久久久三级国产网站| 国产尤物一区二区在线| 一区二区三区.www| 欧美激情综合五月色丁香| 在线欧美小视频| 国产激情视频一区二区三区欧美 | 亚洲成人免费av| 国产日本一区二区| 日韩一区二区三区四区五区六区| 一本到不卡精品视频在线观看| 国产一区在线精品| 日本视频在线一区| 亚洲网友自拍偷拍| 亚洲免费在线观看视频| 精品国产乱码久久久久久久久| 欧美日韩高清在线播放| 色综合天天综合| zzijzzij亚洲日本少妇熟睡| 国产自产高清不卡| 久久国产精品99久久人人澡| 五月激情丁香一区二区三区| 亚洲一区二区三区中文字幕| 亚洲美女精品一区| 中文字幕欧美一| 中文字幕色av一区二区三区| 国产精品日产欧美久久久久| 国产精品青草久久| 中文字幕乱码亚洲精品一区| 久久久久久久网| 国产日产亚洲精品系列| 久久免费美女视频| 久久蜜臀中文字幕| 亚洲精品一区二区三区影院| 88在线观看91蜜桃国自产| 欧美日韩精品综合在线| 欧美高清www午色夜在线视频| 91福利精品视频| 欧洲视频一区二区| 在线观看网站黄不卡| 精品视频1区2区3区| 欧美人体做爰大胆视频| 91精品视频网| 91精品国产美女浴室洗澡无遮挡| 91精品啪在线观看国产60岁| 91麻豆精品国产91久久久| 欧美电影免费观看高清完整版| 欧美精品一区视频| 国产欧美精品国产国产专区| 一区精品在线播放| 亚洲一区在线视频观看| 免费日本视频一区| 国产精品一区在线观看乱码| 成人av第一页| 欧美色窝79yyyycom| 91精品国产欧美一区二区18 | 春色校园综合激情亚洲| 99视频精品在线| 在线视频亚洲一区| 欧美一区二区在线播放| 26uuu国产一区二区三区| 欧美国产欧美综合| 自拍偷拍国产亚洲| 日日夜夜免费精品| 国产曰批免费观看久久久| av男人天堂一区| 欧美日韩国产一级二级| 精品99999| 一区二区在线观看免费| 蜜臀av性久久久久蜜臀aⅴ| 成人午夜激情视频| 欧美日韩高清影院| 国产欧美一区二区精品婷婷| 一区二区三区在线免费播放| 免费一级欧美片在线观看| 风间由美中文字幕在线看视频国产欧美 | 久久精品人人做人人综合 | 日韩一级高清毛片| 国产精品久久久久久久久动漫| 亚洲综合色成人| 狠狠色狠狠色综合| 色视频欧美一区二区三区| 欧美va亚洲va| 亚洲色图视频网站| 美女诱惑一区二区| 色av成人天堂桃色av| 精品国产123| 亚洲已满18点击进入久久| 国产在线播放一区三区四| 欧美日韩国产电影| 国产精品蜜臀av| 蜜桃传媒麻豆第一区在线观看| 91日韩一区二区三区| 亚洲精品在线观| 日韩成人免费看| 在线观看欧美黄色| 日本一区二区三区四区 | 99精品国产热久久91蜜凸| 欧美一级二级三级蜜桃| 一区二区三区在线视频免费观看| 美女视频第一区二区三区免费观看网站| av激情亚洲男人天堂| 久久久久久一级片| 免费在线观看成人| 欧美乱熟臀69xxxxxx| 国产精品国产三级国产a| av不卡在线播放| 日韩女优毛片在线| 午夜一区二区三区在线观看| 成人黄色在线看| 久久久久一区二区三区四区| 免费在线观看日韩欧美| 欧美女孩性生活视频| 一区二区三区视频在线看| av中文字幕不卡| 亚洲国产精品成人综合色在线婷婷 | 国产精品综合网| 日韩视频在线永久播放| 日韩—二三区免费观看av| 欧美视频三区在线播放| 亚洲精品日韩专区silk| 99在线视频精品| 欧美国产日韩a欧美在线观看| 黄色日韩三级电影| 日韩久久免费av| 理论片日本一区| 精品国产一区二区三区不卡| 免费在线看成人av| 日韩欧美一区在线观看| 免费一级片91| 精品国产一区二区三区四区四| 美国毛片一区二区三区| 精品捆绑美女sm三区| 久草中文综合在线| 精品国产乱码91久久久久久网站| 捆绑调教一区二区三区| 精品国产一区二区三区忘忧草| 日韩成人一区二区| 精品嫩草影院久久| 国产 欧美在线| 国产精品麻豆网站| 色婷婷国产精品| 午夜亚洲国产au精品一区二区| 欧美日韩电影在线播放| 奇米精品一区二区三区在线观看一| 日韩女优制服丝袜电影| 国产成人精品综合在线观看| 久久精品视频一区二区三区| 成人av在线资源网| 亚洲一区二区视频在线观看| 欧美精品精品一区| 久久超碰97人人做人人爱| 国产亚洲欧洲一区高清在线观看| 国产iv一区二区三区| 亚洲欧美一区二区不卡| 欧美日韩国产综合视频在线观看| 奇米888四色在线精品| 久久综合国产精品| 91在线免费看| 丝袜脚交一区二区| 久久久蜜桃精品| 91污在线观看| 美腿丝袜亚洲综合| 国产精品视频一二三| 在线观看一区日韩| 精品一区二区三区在线播放| 亚洲国产成人自拍| 欧美日韩一区高清| 国产精品综合二区| 亚洲愉拍自拍另类高清精品| 日韩网站在线看片你懂的| 成人黄色777网| 无码av中文一区二区三区桃花岛| www国产精品av| 欧美影片第一页| 国产经典欧美精品| 亚洲国产aⅴ天堂久久| 国产女人水真多18毛片18精品视频 | 五月天中文字幕一区二区| 国产午夜久久久久| 欧美美女bb生活片| av在线免费不卡| 久久精品国产精品亚洲精品| 亚洲视频在线一区观看| 日韩一二三区视频| 日本韩国欧美在线| 国产精品一区二区黑丝| 亚洲v精品v日韩v欧美v专区| 国产日韩高清在线| 日韩欧美成人午夜| 欧洲视频一区二区| 99久久久久免费精品国产 | 亚洲视频免费在线| 2014亚洲片线观看视频免费| 色香蕉久久蜜桃| 国产成人精品免费在线| 热久久免费视频| 一区二区三区在线视频免费 | 欧美精品一区二区不卡| 欧美亚洲高清一区二区三区不卡|