亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? ada.html

?? Adaboost
?? HTML
字號:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>R: Fitting Stochastic Boosting Models</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" type="text/css" href="../../R.css">
</head><body>

<table width="100%" summary="page for ada {ada}"><tr><td>ada {ada}</td><td align="right">R Documentation</td></tr></table>
<h2>Fitting Stochastic Boosting Models</h2>


<h3>Description</h3>

<p>
&lsquo;ada&rsquo; is used to fit a variety stochastic boosting models for a binary response 
as described in <EM>Additive Logistic Regression:  A Statistical
View of Boosting</EM> by Friedman, et al. (2000).
</p>


<h3>Usage</h3>

<pre>
ada(x,...)
## Default S3 method:
ada(x, y,test.x,test.y=NULL, loss=c("exponential","logistic"),
                      type=c("discrete","real","gentle"),iter=50, nu=0.1, bag.frac=0.5,
                      model.coef=TRUE,bag.shift=FALSE,max.iter=20,delta=10^(-10),verbose=FALSE,
                      na.action=na.rpart,...)

## S3 method for class 'formula':
ada(formula, data, ..., subset, na.action=na.rpart)

</pre>


<h3>Arguments</h3>

<table summary="R argblock">
<tr valign="top"><td><code>x</code></td>
<td>
matrix of descriptors.</td></tr>
<tr valign="top"><td><code>y</code></td>
<td>
vector of responses.  &lsquo;y&rsquo; may have only two unique values.</td></tr>
<tr valign="top"><td><code>test.x</code></td>
<td>
testing matrix of discriptors (optional)</td></tr>
<tr valign="top"><td><code>test.y</code></td>
<td>
vector of testing responses (optional)</td></tr>
<tr valign="top"><td><code>loss</code></td>
<td>
loss="exponential", "ada","e" or any variation corresponds to 
the default boosting under exponential loss.  loss="logistic","l2","l"
provides boosting under logistic loss.</td></tr>
<tr valign="top"><td><code>type</code></td>
<td>
type of boosting algorithm to perform.
&ldquo;discrete&rdquo; performs discrete Boosting (default).
&ldquo;real&rdquo; performs Real Boost.
&ldquo;gentle&rdquo; performs Gentle Boost.</td></tr>
<tr valign="top"><td><code>iter</code></td>
<td>
number of boosting iterations to perform.  Default = 50.</td></tr>
<tr valign="top"><td><code>nu</code></td>
<td>
shrinkage parameter for boosting, default taken as 1.</td></tr>
<tr valign="top"><td><code>bag.frac</code></td>
<td>
sampling fraction for samples taken out-of-bag.  This allows one
to use random permutation which improves performance.</td></tr>
<tr valign="top"><td><code>model.coef</code></td>
<td>
flag to use stageweights in boosting.  If FALSE then the procedure
corresponds to epsilon-boosting.</td></tr>
<tr valign="top"><td><code>bag.shift</code></td>
<td>
flag to determine whether the stageweights should go to 
one as nu goes to zero.  This only makes since if bag.frac
is small.  The rationale behind this parameter is discussed in
(Culp et al., 2006).</td></tr>
<tr valign="top"><td><code>max.iter</code></td>
<td>
number of iterations to perform in the newton step to determine 
the coeficient.</td></tr>
<tr valign="top"><td><code>delta</code></td>
<td>
</td></tr>
<tr valign="top"><td><code>verbose</code></td>
<td>
print the number of iterations necessary for convergence of a coeficient.</td></tr>
<tr valign="top"><td><code>formula</code></td>
<td>
a symbolic description of the model to be fit.</td></tr>
<tr valign="top"><td><code>data</code></td>
<td>
an optional data frame containing the variables in the model.</td></tr>
<tr valign="top"><td><code>subset</code></td>
<td>
an optional vector specifying a subset of observations to be
used in the fitting process.</td></tr>
<tr valign="top"><td><code>na.action</code></td>
<td>
a function that indicates how to process &lsquo;NA&rsquo; values.  Default=na.rpart.</td></tr>
<tr valign="top"><td><code>...</code></td>
<td>
arguments passed to <code>rpart.control</code>.  For stumps, use <code>rpart.control(maxdepth=1,cp=-1,minsplit=0,xval=0)</code>.
<code>maxdepth</code> controls the depth of trees, and <code>cp</code>
controls the complexity of trees.  The priors should also
be fixed through the parms argument as discussed in the
second reference.</td></tr>
</table>

<h3>Details</h3>

<p>
This function directly follows the algorithms listed in <EM>&ldquo;Additive Logistic
Regression:  A Statistical View of Boosting&rdquo;</EM>.
</p>
<p>
When using usage &lsquo;ada(x,y)&rsquo;:
x data can take the form data.frame or as.matrix.
y data can take form data.frame, as.factor, as.matrix, as.array, or as.table.
missing values must be removed from the data prior to execution.
</p>
<p>
When using usage &lsquo;ada(y~.)&rsquo;:
data must be in a data frame.  Response can have factor or numeric values.
missing values can be present in the descriptor data, whenever
na.action is set to any option other than na.pass.
</p>
<p>
After the model is fit, &lsquo;ada&rsquo; prints 
a summary of the function call, 
the method used for boosting, 
the number of iterations,
the final confusion matrix (observed classification vs predicted classification; 
labels for classes are same as in response),  
the error for the training set, and testing, training , and kappa estimates of the 
appropriate number of iterations.
</p>
<p>
A summary of this information can also be obtained with the command &lsquo;print(x)&rsquo;.
</p>
<p>
Corresponding functions (Use help with summary.ada, predict.ada, ...
varplot for additional information on these commands):
</p>
<p>
summary :  function to print a summary of the original function call, method
used for boosting, number of iterations, final confusion matrix,
accuracy, and kappa statistic (a measure of agreement between
the observed classification and predicted classification).
&lsquo;summary&rsquo; can be used for training, testing, or
validation data.  
</p>
<p>
predict :  function to predict the response for any data set (train,
test, or validation)
</p>
<p>
plot    :  function to plot performance of the algorithm across boosting iterations.
Default plot is iteration number (x-axis) versus prediction error (y-axis) for
the data set used to build the model.  Function can also simultaneously
produce an error plot for an external test set and a kappa plot for training and
test sets. 
</p>
<p>
pairs   :  function to produce pairwise plots of descriptors.  Descriptors are arranged by 
decreasing frequency of selection by boosting (upper left = most frequently chosen).
The color of the marker in the plot represents class membership; the Size of the marker
represents predicted class probability.  The larger the marker, the higher the
probability of classification.
</p>
<p>
varplot :  plot of variables ordered by the variable importance measure (based on improvement).
</p>
<p>
addtest : add a testing data set to the <code>ada</code> object, therefore the testing errors only have to 
be computed once.  
</p>
<p>
update : add more trees to the <code>ada</code> object.
</p>


<h3>Value</h3>

<table summary="R argblock">
<tr valign="top"><td><code>model</code></td>
<td>
The following items are the different components created by the algorithms:
trees:  ensamble of rpart trees used to fit the model
alpha:  the weights of the trees used in the final aggregate model (AdaBoost only; 
see references for more information)
F    :  F[[1]] corresponds to the training sum, F[[2]]], ... corresponds to
testing sums.
errs  :  matrix of errs, training, kappa, testing 1, kappa 1, ...
lw    :  last weights calculated, used by update routine
</td></tr>
<tr valign="top"><td><code>fit</code></td>
<td>
The predicted classification for each observation in the orginal level of the response.
</td></tr>
<tr valign="top"><td><code>call</code></td>
<td>
The function call.
</td></tr>
<tr valign="top"><td><code>nu</code></td>
<td>
shrinakge parameter</td></tr>
<tr valign="top"><td><code>type</code></td>
<td>
The type of adaboost performed:  &lsquo;discrete&rsquo;, &lsquo;real&rsquo;, &lsquo;logit&rsquo;, and &lsquo;gentle&rsquo;.
</td></tr>
<tr valign="top"><td><code>confusion</code></td>
<td>
The confusion matrix (True value vs. Predicted value) for the training data.
</td></tr>
<tr valign="top"><td><code>iter</code></td>
<td>
The number of boosting iterations that were performed.
</td></tr>
<tr valign="top"><td><code>actual</code></td>
<td>
The original response vector.
</td></tr>
</table>

<h3>Warnings</h3>

<p>
For LogitBoost and Gentle Boost, under certain circumstances, the
methods will fail to classify the data into more than one category.
If this occurs, try modifying the rpart.control options such as
&lsquo;minsplit&rsquo;, &lsquo;cp&rsquo;, and &lsquo;maxdepth&rsquo;.
</p>
<p>
&lsquo;ada&rsquo; does not currently handle multiclass problems.  However, there
is an example in (Culp et al., 2006) that shows how to use this code
in that setting.  Plots and other functions are not set up for this analysis.
</p>


<h3>Author(s)</h3>

<p>
Mark Culp, University of Michigan
Kjell Johnson, Pfizer, Inc.
George Michailidis, University of Michigan
</p>
<p>
Special thanks goes to:
Zhiguang Qian, Georgia Tech University
Greg Warnes, Pfizer, Inc.
</p>


<h3>References</h3>

<p>
Friedman, J. (1999). <EM>Greedy Function Approximation: A Gradient Boosting Machine.</EM> 
Technical Report, Department of Statistics, Standford University.
</p>
<p>
Friedman, J., Hastie, T., and Tibshirani, R.  (2000).  <EM>Additive Logistic Regression:
A statistical view of boosting</EM>.  Annals of Statistics, 28(2), 337-374.
</p>
<p>
Friedman, J. (2002). <EM>Stochastic Gradient Boosting</EM>. 
Coputational Statistics &amp; Data Analysis 38.
</p>
<p>
Culp, M., Johnson, K., Michailidis, G. (2006). <EM>ada: an R Package
for Boosting</EM> Journal of Statistical Software.
</p>


<h3>See Also</h3>

<p>
<code><a href="print.ada.html">print.ada</a></code>,<code><a href="summary.ada.html">summary.ada</a></code>,<code><a href="predict.ada.html">predict.ada</a></code>
<code><a href="plot.ada.html">plot.ada</a></code>,<code><a href="pairs.ada.html">pairs.ada</a></code>,<code><a href="update.ada.html">update.ada</a></code>
<code><a href="addtest.html">addtest</a></code>
</p>


<h3>Examples</h3>

<pre>
## fit discrete ada boost to a simple example
data(iris)
##drop setosa
iris[iris$Species!="setosa",]-&gt;iris
##set up testing and training data (60% for training)
n&lt;-dim(iris)[1]
trind&lt;-sample(1:n,floor(.6*n),FALSE)
teind&lt;-setdiff(1:n,trind)
iris[,5]&lt;- as.factor((levels(iris[,5])[2:3])[as.numeric(iris[,5])-1])
##fit 8-split trees
gdis&lt;-ada(Species~.,data=iris[trind,],iter=20,nu=1,type="discrete")
##add testing data set
gdis=addtest(gdis,iris[teind,-5],iris[teind,5])
##plot gdis
plot(gdis,TRUE,TRUE)
##variable selection plot
varplot(gdis)
##pairwise plot
pairs(gdis,iris[trind,-5],maxvar=2)

##for many more examples refer to reference (Culp et al., 2006)
</pre>



<hr><div align="center">[Package <em>ada</em> version 2.0-1 <a href="00Index.html">Index]</a></div>

</body></html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩在线精品一区二区三区激情 | 色综合久久久久网| 亚洲黄色录像片| 欧美一区二区福利视频| 国产裸体歌舞团一区二区| 国产三级精品视频| 欧美三级在线看| 经典一区二区三区| 亚洲欧美日韩在线播放| 欧美国产日韩在线观看| 色综合久久综合网97色综合 | 国产福利不卡视频| 亚洲影院理伦片| 青青草原综合久久大伊人精品优势| 欧美一区二区三区四区五区| 成人一级黄色片| 免费在线看成人av| 亚洲一区免费视频| 中文在线资源观看网站视频免费不卡 | 亚洲亚洲人成综合网络| 中文字幕一区视频| 中文字幕一区二区三区在线观看 | 日韩精品影音先锋| 337p亚洲精品色噜噜狠狠| 欧美精品一二三| 午夜精品久久久久久久99樱桃| 精品国产一区a| 国产精品久久三区| 国产91精品在线观看| 国产成人亚洲精品狼色在线| 春色校园综合激情亚洲| 色综合色狠狠综合色| 制服丝袜成人动漫| 国产欧美一区视频| 一区二区成人在线| 麻豆一区二区三| 国产91精品入口| 欧美色爱综合网| 久久综合五月天婷婷伊人| 成人欧美一区二区三区视频网页 | jiyouzz国产精品久久| 欧美色综合网站| 久久精品一区二区三区不卡牛牛 | 国产在线精品一区二区不卡了| 国产成人精品亚洲午夜麻豆| 欧美视频精品在线| 国产精品无码永久免费888| 午夜视频一区在线观看| 成人黄色小视频在线观看| 欧美猛男gaygay网站| 国产精品久久久久久亚洲毛片| 五月婷婷另类国产| 91在线小视频| 国产午夜精品一区二区| 蜜臀a∨国产成人精品| 欧美日韩一区国产| 亚洲视频每日更新| 成人美女视频在线观看18| 精品成人佐山爱一区二区| 日韩有码一区二区三区| 欧洲精品视频在线观看| 亚洲精品日韩一| 99国产精品国产精品毛片| 国产亚洲精品精华液| 国产精品99久久久久久宅男| 精品国产a毛片| 另类欧美日韩国产在线| 久久夜色精品国产噜噜av| 麻豆精品久久精品色综合| 日韩女优电影在线观看| 日本欧美在线观看| 精品国产一区二区国模嫣然| 国产精品综合一区二区| 欧美国产精品久久| 97久久超碰国产精品电影| 亚洲色图丝袜美腿| 欧美日韩国产另类不卡| 精品一区二区三区在线播放| 国产午夜精品久久久久久免费视 | 成人一区二区三区| 中文字幕佐山爱一区二区免费| 色欧美乱欧美15图片| 日本欧美肥老太交大片| 欧美精品一区二区三区在线播放| 成人在线综合网站| 亚洲午夜精品17c| 久久久三级国产网站| 欧美在线小视频| 国产精品综合二区| 亚洲国产日韩在线一区模特| 久久综合色之久久综合| 91丨porny丨在线| 美女一区二区视频| 亚洲免费在线看| 亚洲视频免费在线观看| 国产精品久久国产精麻豆99网站| 日韩黄色一级片| www.亚洲色图.com| 韩国成人精品a∨在线观看| 午夜在线成人av| 亚洲成a人片综合在线| 在线区一区二视频| 国产精品污网站| 国产欧美日韩不卡| 久久久夜色精品亚洲| 欧美一级片在线| 日韩精品最新网址| 精品不卡在线视频| 久久久精品一品道一区| 国产精品欧美一区二区三区| 国产蜜臀97一区二区三区| 1000部国产精品成人观看| 亚洲卡通动漫在线| 午夜av电影一区| 国产乱码精品一品二品| 9久草视频在线视频精品| 色视频一区二区| 日韩精品一区二| 国产精品免费aⅴ片在线观看| 亚洲美女屁股眼交| 日本欧美一区二区三区| 懂色av一区二区三区免费看| 一本色道亚洲精品aⅴ| 欧美疯狂做受xxxx富婆| 欧美国产日韩在线观看| 亚洲国产精品综合小说图片区| 久久99热这里只有精品| www.欧美色图| 91麻豆精品91久久久久久清纯| 久久精品亚洲一区二区三区浴池| 亚洲人亚洲人成电影网站色| 美女在线观看视频一区二区| 91啦中文在线观看| 久久新电视剧免费观看| 亚洲激情网站免费观看| 欧美亚洲国产一区二区三区va| 天天操天天干天天综合网| 精品视频在线免费看| 国产成人免费视频网站| 日韩不卡一区二区| 视频在线观看国产精品| 亚洲成人激情综合网| 久久久99精品久久| 久久久不卡网国产精品一区| 色婷婷av久久久久久久| 精品婷婷伊人一区三区三| 欧美精品高清视频| 中文字幕第一区综合| 麻豆91免费看| 日韩欧美你懂的| 五月天婷婷综合| 在线观看91精品国产入口| 国产日韩在线不卡| 久久99精品视频| 日韩欧美国产一区在线观看| 亚洲成人免费在线观看| 色八戒一区二区三区| 国产精品久久久久一区| gogogo免费视频观看亚洲一| 久久九九全国免费| 国产精品88av| 国产色婷婷亚洲99精品小说| 国产麻豆精品theporn| 精品91自产拍在线观看一区| 国内欧美视频一区二区| 久久青草国产手机看片福利盒子 | 亚洲综合色噜噜狠狠| 色呦呦日韩精品| 亚洲国产日日夜夜| 日韩视频永久免费| 国产精品一区2区| 一区视频在线播放| 色94色欧美sute亚洲线路一久| 一区二区三区四区乱视频| 欧美色欧美亚洲另类二区| 天天爽夜夜爽夜夜爽精品视频| 日韩一级二级三级精品视频| 国产乱一区二区| 中文字幕亚洲不卡| 欧美嫩在线观看| 国产精品18久久久久久久网站| 国产精品网站一区| 欧美久久久久中文字幕| 国产精品一区二区久久不卡 | 337p亚洲精品色噜噜狠狠| 国产一区二区三区黄视频| 亚洲美女在线一区| 欧美大肚乱孕交hd孕妇| av资源站一区| 蜜臀99久久精品久久久久久软件| 国产精品午夜免费| 欧美成人一区二区三区| 色综合天天狠狠| 国内外精品视频| 日韩国产在线一| 亚洲色图视频网站| 国产精品天天看| 欧美精品一区二区三区蜜桃 | 一区二区三区四区在线播放| 久久精品欧美日韩|