亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? jmemmgr.c

?? Evc編的一個在wince5.0上運行的flash播放器
?? C
?? 第 1 頁 / 共 3 頁
字號:
/*
 * jmemmgr.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the JPEG system-independent memory management
 * routines.  This code is usable across a wide variety of machines; most
 * of the system dependencies have been isolated in a separate file.
 * The major functions provided here are:
 *   * pool-based allocation and freeing of memory;
 *   * policy decisions about how to divide available memory among the
 *     virtual arrays;
 *   * control logic for swapping virtual arrays between main memory and
 *     backing storage.
 * The separate system-dependent file provides the actual backing-storage
 * access code, and it contains the policy decision about how much total
 * main memory to use.
 * This file is system-dependent in the sense that some of its functions
 * are unnecessary in some systems.  For example, if there is enough virtual
 * memory so that backing storage will never be used, much of the virtual
 * array control logic could be removed.  (Of course, if you have that much
 * memory then you shouldn't care about a little bit of unused code...)
 */

#define JPEG_INTERNALS
#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h"		/* import the system-dependent declarations */

#ifndef NO_GETENV
#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
extern char * getenv JPP((const char * name));
#endif
#endif


/*
 * Some important notes:
 *   The allocation routines provided here must never return NULL.
 *   They should exit to error_exit if unsuccessful.
 *
 *   It's not a good idea to try to merge the sarray and barray routines,
 *   even though they are textually almost the same, because samples are
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
 *   in machines where byte pointers have a different representation from
 *   word pointers, the resulting machine code could not be the same.
 */


/*
 * Many machines require storage alignment: longs must start on 4-byte
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
 * always returns pointers that are multiples of the worst-case alignment
 * requirement, and we had better do so too.
 * There isn't any really portable way to determine the worst-case alignment
 * requirement.  This module assumes that the alignment requirement is
 * multiples of sizeof(ALIGN_TYPE).
 * By default, we define ALIGN_TYPE as double.  This is necessary on some
 * workstations (where doubles really do need 8-byte alignment) and will work
 * fine on nearly everything.  If your machine has lesser alignment needs,
 * you can save a few bytes by making ALIGN_TYPE smaller.
 * The only place I know of where this will NOT work is certain Macintosh
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
 * Doing 10-byte alignment is counterproductive because longwords won't be
 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
 * such a compiler.
 */

#ifndef ALIGN_TYPE		/* so can override from jconfig.h */
#define ALIGN_TYPE  double
#endif


/*
 * We allocate objects from "pools", where each pool is gotten with a single
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
 * overhead within a pool, except for alignment padding.  Each pool has a
 * header with a link to the next pool of the same class.
 * Small and large pool headers are identical except that the latter's
 * link pointer must be FAR on 80x86 machines.
 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
 * of the alignment requirement of ALIGN_TYPE.
 */

typedef union small_pool_struct * small_pool_ptr;

typedef union small_pool_struct {
  struct {
    small_pool_ptr next;	/* next in list of pools */
    size_t bytes_used;		/* how many bytes already used within pool */
    size_t bytes_left;		/* bytes still available in this pool */
  } hdr;
  ALIGN_TYPE dummy;		/* included in union to ensure alignment */
} small_pool_hdr;

typedef union large_pool_struct FAR * large_pool_ptr;

typedef union large_pool_struct {
  struct {
    large_pool_ptr next;	/* next in list of pools */
    size_t bytes_used;		/* how many bytes already used within pool */
    size_t bytes_left;		/* bytes still available in this pool */
  } hdr;
  ALIGN_TYPE dummy;		/* included in union to ensure alignment */
} large_pool_hdr;


/*
 * Here is the full definition of a memory manager object.
 */

typedef struct {
  struct jpeg_memory_mgr pub;	/* public fields */

  /* Each pool identifier (lifetime class) names a linked list of pools. */
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
  large_pool_ptr large_list[JPOOL_NUMPOOLS];

  /* Since we only have one lifetime class of virtual arrays, only one
   * linked list is necessary (for each datatype).  Note that the virtual
   * array control blocks being linked together are actually stored somewhere
   * in the small-pool list.
   */
  jvirt_sarray_ptr virt_sarray_list;
  jvirt_barray_ptr virt_barray_list;

  /* This counts total space obtained from jpeg_get_small/large */
  long total_space_allocated;

  /* alloc_sarray and alloc_barray set this value for use by virtual
   * array routines.
   */
  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
} my_memory_mgr;

typedef my_memory_mgr * my_mem_ptr;


/*
 * The control blocks for virtual arrays.
 * Note that these blocks are allocated in the "small" pool area.
 * System-dependent info for the associated backing store (if any) is hidden
 * inside the backing_store_info struct.
 */

struct jvirt_sarray_control {
  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
  JDIMENSION rows_in_array;	/* total virtual array height */
  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
  JDIMENSION rows_in_mem;	/* height of memory buffer */
  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
  boolean pre_zero;		/* pre-zero mode requested? */
  boolean dirty;		/* do current buffer contents need written? */
  boolean b_s_open;		/* is backing-store data valid? */
  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
  backing_store_info b_s_info;	/* System-dependent control info */
};

struct jvirt_barray_control {
  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
  JDIMENSION rows_in_array;	/* total virtual array height */
  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
  JDIMENSION rows_in_mem;	/* height of memory buffer */
  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
  boolean pre_zero;		/* pre-zero mode requested? */
  boolean dirty;		/* do current buffer contents need written? */
  boolean b_s_open;		/* is backing-store data valid? */
  jvirt_barray_ptr next;	/* link to next virtual barray control block */
  backing_store_info b_s_info;	/* System-dependent control info */
};


#ifdef MEM_STATS		/* optional extra stuff for statistics */

LOCAL(void)
print_mem_stats (j_common_ptr cinfo, int pool_id)
{
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  small_pool_ptr shdr_ptr;
  large_pool_ptr lhdr_ptr;

  /* Since this is only a debugging stub, we can cheat a little by using
   * fprintf directly rather than going through the trace message code.
   * This is helpful because message parm array can't handle longs.
   */
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
	  pool_id, mem->total_space_allocated);

  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
       lhdr_ptr = lhdr_ptr->hdr.next) {
    fprintf(stderr, "  Large chunk used %ld\n",
	    (long) lhdr_ptr->hdr.bytes_used);
  }

  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
       shdr_ptr = shdr_ptr->hdr.next) {
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
	    (long) shdr_ptr->hdr.bytes_used,
	    (long) shdr_ptr->hdr.bytes_left);
  }
}

#endif /* MEM_STATS */


LOCAL(void)
out_of_memory (j_common_ptr cinfo, int which)
/* Report an out-of-memory error and stop execution */
/* If we compiled MEM_STATS support, report alloc requests before dying */
{
#ifdef MEM_STATS
  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
#endif
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
}


/*
 * Allocation of "small" objects.
 *
 * For these, we use pooled storage.  When a new pool must be created,
 * we try to get enough space for the current request plus a "slop" factor,
 * where the slop will be the amount of leftover space in the new pool.
 * The speed vs. space tradeoff is largely determined by the slop values.
 * A different slop value is provided for each pool class (lifetime),
 * and we also distinguish the first pool of a class from later ones.
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
 * machines, but may be too small if longs are 64 bits or more.
 */

static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
{
	1600,			/* first PERMANENT pool */
	16000			/* first IMAGE pool */
};

static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
{
	0,			/* additional PERMANENT pools */
	5000			/* additional IMAGE pools */
};

#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */


METHODDEF(void *)
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
/* Allocate a "small" object */
{
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
  char * data_ptr;
  size_t odd_bytes, min_request, slop;

  /* Check for unsatisfiable request (do now to ensure no overflow below) */
  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */

  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
  if (odd_bytes > 0)
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;

  /* See if space is available in any existing pool */
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
  prev_hdr_ptr = NULL;
  hdr_ptr = mem->small_list[pool_id];
  while (hdr_ptr != NULL) {
    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
      break;			/* found pool with enough space */
    prev_hdr_ptr = hdr_ptr;
    hdr_ptr = hdr_ptr->hdr.next;
  }

  /* Time to make a new pool? */
  if (hdr_ptr == NULL) {
    /* min_request is what we need now, slop is what will be leftover */
    min_request = sizeofobject + SIZEOF(small_pool_hdr);
    if (prev_hdr_ptr == NULL)	/* first pool in class? */
      slop = first_pool_slop[pool_id];
    else
      slop = extra_pool_slop[pool_id];
    /* Don't ask for more than MAX_ALLOC_CHUNK */
    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    /* Try to get space, if fail reduce slop and try again */
    for (;;) {
      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
      if (hdr_ptr != NULL)
	break;
      slop /= 2;
      if (slop < MIN_SLOP)	/* give up when it gets real small */
	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    }
    mem->total_space_allocated += min_request + slop;
    /* Success, initialize the new pool header and add to end of list */
    hdr_ptr->hdr.next = NULL;
    hdr_ptr->hdr.bytes_used = 0;
    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
    if (prev_hdr_ptr == NULL)	/* first pool in class? */
      mem->small_list[pool_id] = hdr_ptr;
    else
      prev_hdr_ptr->hdr.next = hdr_ptr;
  }

  /* OK, allocate the object from the current pool */
  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
  hdr_ptr->hdr.bytes_used += sizeofobject;
  hdr_ptr->hdr.bytes_left -= sizeofobject;

  return (void *) data_ptr;
}


/*
 * Allocation of "large" objects.
 *
 * The external semantics of these are the same as "small" objects,
 * except that FAR pointers are used on 80x86.  However the pool
 * management heuristics are quite different.  We assume that each
 * request is large enough that it may as well be passed directly to
 * jpeg_get_large; the pool management just links everything together
 * so that we can free it all on demand.
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
 * structures.  The routines that create these structures (see below)
 * deliberately bunch rows together to ensure a large request size.
 */

METHODDEF(void FAR *)
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
/* Allocate a "large" object */
{
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
  large_pool_ptr hdr_ptr;
  size_t odd_bytes;

  /* Check for unsatisfiable request (do now to ensure no overflow below) */
  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */

  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
  if (odd_bytes > 0)
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;

  /* Always make a new pool */
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */

  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
					    SIZEOF(large_pool_hdr));
  if (hdr_ptr == NULL)
    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);

  /* Success, initialize the new pool header and add to list */
  hdr_ptr->hdr.next = mem->large_list[pool_id];
  /* We maintain space counts in each pool header for statistical purposes,
   * even though they are not needed for allocation.
   */
  hdr_ptr->hdr.bytes_used = sizeofobject;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品久久久久三级| 国产91在线观看| 国产高清精品网站| 在线视频一区二区三区| 26uuu久久天堂性欧美| 亚洲自拍偷拍麻豆| 高清不卡在线观看av| 777精品伊人久久久久大香线蕉| 中文乱码免费一区二区| 精品亚洲porn| 3d动漫精品啪啪1区2区免费| 成人免费小视频| 岛国av在线一区| 欧美哺乳videos| 日韩电影在线免费观看| 91在线精品一区二区三区| 久久这里只精品最新地址| 亚洲一区二区三区在线看| 成人av网站大全| 国产视频视频一区| 麻豆精品一二三| 正在播放亚洲一区| 亚洲超碰精品一区二区| 色婷婷久久99综合精品jk白丝| 久久久久久麻豆| 激情图片小说一区| 精品国产一区二区三区av性色| 亚洲成人资源网| 欧美午夜不卡视频| 一级精品视频在线观看宜春院| 91在线国内视频| 亚洲最大色网站| 欧洲亚洲精品在线| 亚洲第一综合色| 91精品国产欧美一区二区| 亚洲成人在线观看视频| 欧美日韩成人综合天天影院| 午夜精品视频一区| 欧美精品v国产精品v日韩精品| 亚洲成人777| 777色狠狠一区二区三区| 日韩成人精品视频| 欧美r级电影在线观看| 精品一区二区综合| 国产人久久人人人人爽| 不卡视频一二三| 亚洲日本在线看| 欧美影院午夜播放| 青青草国产精品97视觉盛宴| 精品久久久久99| 成人免费视频caoporn| 亚洲色图色小说| 欧美久久高跟鞋激| 精品一区二区三区免费观看| 日本一区二区三区久久久久久久久不| 国产xxx精品视频大全| 一区二区三区四区视频精品免费| 欧美四级电影网| 韩国av一区二区三区四区| 国产欧美一区二区精品性| 色综合 综合色| 另类调教123区| 国产精品久久久久桃色tv| 欧美久久高跟鞋激| 成人永久aaa| 亚洲成人动漫一区| 国产午夜精品在线观看| 欧洲国内综合视频| 精品一区二区在线视频| 日韩一区有码在线| 欧美一区二区黄| 99久久精品久久久久久清纯| 天堂va蜜桃一区二区三区 | 欧美二区三区的天堂| 精品亚洲porn| 亚洲午夜久久久| 国产亚洲综合色| 欧美日韩国产三级| 国产传媒一区在线| 日韩1区2区日韩1区2区| 国产精品国产三级国产普通话三级 | 亚洲制服欧美中文字幕中文字幕| 日韩一区二区不卡| 色94色欧美sute亚洲线路一久| 精品一区二区三区免费播放| 亚洲综合视频网| 国产精品无码永久免费888| 欧美色男人天堂| 99热99精品| 国产老肥熟一区二区三区| 日韩主播视频在线| 亚洲天堂成人在线观看| 久久精品视频免费观看| 日韩一二三区视频| 欧美天堂一区二区三区| 99久久精品免费精品国产| 国产精品资源在线观看| 美女性感视频久久| 亚洲制服欧美中文字幕中文字幕| 国产精品麻豆网站| 国产午夜精品在线观看| 精品久久一二三区| 日韩一区二区在线看| 欧美日本韩国一区| 欧洲一区二区av| 91久久精品一区二区三区| 99国产精品一区| 99久久精品国产网站| 成人午夜免费电影| 国产精品一区专区| 韩国av一区二区三区四区| 久久精品国产亚洲aⅴ| 青椒成人免费视频| 美女视频免费一区| 蜜乳av一区二区三区| 裸体歌舞表演一区二区| 经典一区二区三区| 精品一区二区免费| 国产伦精品一区二区三区免费迷| 美女视频黄久久| 韩国v欧美v亚洲v日本v| 国产福利一区二区| 福利一区福利二区| 国产毛片一区二区| 成人av网址在线| 色综合色狠狠综合色| 欧美在线不卡一区| 欧美日韩国产高清一区二区| 日韩一本二本av| 国产亚洲成aⅴ人片在线观看 | 欧美xxx久久| 国产亚洲精品bt天堂精选| 国产精品久久一级| 一区二区欧美国产| 日本亚洲免费观看| 久久国产精品第一页| 高清不卡一区二区在线| 91一区一区三区| 欧美日韩www| 国产丝袜在线精品| 亚洲男同1069视频| 轻轻草成人在线| 成人丝袜18视频在线观看| 91成人免费在线| 日韩一区二区电影在线| 中文字幕av一区二区三区免费看 | 久久午夜老司机| 亚洲精选视频免费看| 毛片基地黄久久久久久天堂| 国产精品原创巨作av| 91黄色小视频| 久久久噜噜噜久久中文字幕色伊伊 | 国产精品九色蝌蚪自拍| 亚洲主播在线播放| 国产自产高清不卡| 日本精品裸体写真集在线观看| 制服丝袜激情欧洲亚洲| 国产精品青草综合久久久久99| 亚洲综合在线视频| 国产mv日韩mv欧美| 在线播放国产精品二区一二区四区| 久久影音资源网| 一区二区三区**美女毛片| 国产麻豆精品在线观看| 欧美久久一二区| 亚洲三级在线看| 国模一区二区三区白浆| 欧美性感一区二区三区| 国产亚洲成年网址在线观看| 日本色综合中文字幕| 色综合久久久网| 国产日韩欧美高清在线| 美日韩一区二区| 在线观看亚洲成人| 欧美国产禁国产网站cc| 激情综合网天天干| 69堂亚洲精品首页| 亚洲一区二区四区蜜桃| 91在线观看美女| 国产视频视频一区| 狠狠色丁香婷综合久久| 欧美午夜电影网| 亚洲丝袜美腿综合| 国产91精品一区二区麻豆亚洲| 日韩三级视频在线观看| 亚洲国产你懂的| 91视频在线看| 国产精品不卡一区二区三区| 国产又粗又猛又爽又黄91精品| 日韩一级欧美一级| 琪琪久久久久日韩精品| 欧美精品在线观看一区二区| 亚洲精品五月天| 99久久久久免费精品国产| 国产精品麻豆久久久| 成人的网站免费观看| 中文字幕在线观看不卡视频| 成人午夜在线视频| 中文字幕一区日韩精品欧美| 不卡av电影在线播放|