亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme.txt

?? kde全稱是kernel density estimation.基于核函數的概率密度估計方法。是模式識別中常用的算法之一
?? TXT
字號:
==============================================================================MATLAB KDE Class Description & Specification==============================================================================  The KDE class is a general matlab class for k-dimensional kernel densityestimation.  It is written in a mix of matlab ".m" files and MEX/C++ code.Thus, to use it you will need to be able to compile C++ code for Matlab.Note that the default compiler for Windows does *not* support C++, so youwill need GCC under Linux, or GCC or Visual C++ for Windows. Bloodshed(http://www.bloodshed.net) supplies a nice development environment alongwith the MinGW (http://www.mingw.org) compiler. See the page http://gnumex.sourceforge.net/ for help setting up MEX with MinGW.  Kernels supported are:  Gaussian, Epanetchnikov (truncated quadratic), 				and Laplacian (Double exponential)  For multivariate density estimates, the code supports product kernels --         kernels which are products of the kernel function in each dimension.  	For example, for Gaussian kernels this is equivalent to requiring a 	diagonal covariance.	It can also support non-uniform kernel bandwidths -- i.e. bandwidths 	which vary over kernel centers.  The implementation uses "kd-trees", a heirarchical representation forpoint sets which caches sufficient statistics about point locations etc.in order to achieve potential speedups in computation.  For the Epanetchnikovkernel this can translate into speedups with no loss of precision; but forkernels with infinite support it provides an approximation tolerance level,which allows tradeoffs between evaluation quality and computation speed.  In particular, we implement Alex Gray's "Dual Tree" evaluation algorithm;see [Gray and Moore, "Very Fast Multivariate Kernel Density Estimation usingvia Computational Geometry", in Proceedings, Joint Stat. Meeting 2003] for more details. This gives a tolerance parameter which is a percent error (from the exact, N^2 computation) on the value at any evaluated point.  In general, "tolerance" parameters in the matlab code / notes refers to this percent tolerance. This percentage error translates to an absolute additive error on the mean log-likelihood, for example.  An exception to this is the gradient calcuation functions, which calculateusing an absolute tolerance value.  This is due to the difficulty of findinga percentage bound when the function calculated is not strictly positive.  We have also recently implemented the so-called Improved Fast Gauss Transform,described in [Yang, Duraiswami, and Gumerov, "Improved Fast Gauss Transform", submitted to the Siam Journal of Scientific Computing].  This often performsMUCH faster than the dual tree algorithm mentioned above, but the error boundswhich control the computation are often quite loose, and somewhat unwieldy(for example, it is difficult to obtain the fractional error bounds provided &used by the dual tree methods and other functions in the KDE toolbox).  Thus for the moment we have left the IFGT separate, with alternate controls for computational complexity (see below, and the file "evalIFGT.m").==============================================================================Getting Started==============================================================================  Unzip the KDE class to a directory called @kde.  Compile the MEX functions.  This can be done by running "makemex" from    inside matlab, in the "@kde/mex" directory.  If this fails, make sure that    MEX / C++ compilation works.  The KDE toolbox is tested in Matlab R13, but     apparently has problems in R12; I'm planning to investigate this.    NOTE: MS Visual C++ has a bug in dealing with "static const" variables; I      think there is a patch available, or you can change these to #defines.  Operate from the class' parent directory, or add it to your MATLAB path    (e.g. if you unzip to "myhome/@kde", cd in matlab to the "myhome" dir,    or add it to the path.)    Objects of type KDE may be created by e.g.    p = kde( rand(2,1000), [.05;.03] );		% Gaussian kernel, 2D						%  BW = .05 in dim 1, .03 in dim 2.    p = kde( rand(2,1000), .05, ones(1,1000) )  % Same as above, but uniform BW and						%  specifying weights     p = kde( rand(2,1000), .05, ones(1,1000), 'Epanetchnikov')  % Quadratic kernel						% Just 'E' or 'e' also works    p = kde( rand(2,1000), 'rot' );		% Gaussian kernel, 2D, 						%  BW chosen by "rule of thumb" (below)  To see the kernel shape types, you can use:    plot(-3:.01:3, evaluate(kde(0,1,1,T),-3:.01:3) ); % where T = 'G', 'E', or 'L'    Kernel sizes may be selected automatically using e.g.    p = ksize(p, 'lcv');	% 1D Likelihood-based search for BW    p = ksize(p, 'rot');	% "Rule of Thumb"; Silverman '86 / Scott '92    p = ksize(p, 'hall');	% Plug-in type estimator  Density estimates may be visualized using e.g.    plot(p);  or    mesh(hist(p));  See help kde/plot and help kde/hist for more information.  Also, the demonstration programs @kde/examples/demo_kde_#.m may be helpful.==============================================================================KDE Matlab class definition==============================================================================The following is a simple list of all accessible functions for the KDE class.Constructors:=====================================================  kde( )			: empty kde  kde( kde )			: re-construct kde from points, weights, bw, etc.  kde( points, bw )		: construct Gauss kde with weights 1/N  kde( points, bw, weights)	: construct Gaussian kde  kde( points, bw, weights,type): potentially non-Gaussian  marginal( kde, dim)		: marginalize to the given dimensions   condition( kde, dim, A)	: marginalize to ~dim and weight by K(x_i(dim),a(dim))   resample( kde, [kstype] )	: draw N samples from kde & use to construct a new kde  reduce( kde, ...)             : construct a "reduced" density estimate (fewer points)  joinTrees( t1, t2 )           : make a new tree with t1 and t2 as				  the children of a new root nodeAccessors: (data access, extremely limited or no processing req'd)=====================================================  getType(kde)		: return the kernel type of the KDE ('Gaussian', etc)  getBW(kde,index)	: return the bandwidth assoc. with x_i  (Ndim x length(index))  adjustBW		: set the bandwidth(s) of the KDE (by reference!)			   Note: cannot change from a uniform -> non-uniform bandwidth  ksize			: automatic bandwidth selection via a number of methods    LCV			: 1D search using max leave-one-out likelihood criterion    HALL		: Plug-in estimator with good asymptotics; MISE criterion    ROT,MSP		: Fast standard-deviaion based methods; AMISE criterion    LOCAL		: Like LCV, but makes BW propto k-th NN distance (k=sqrt(N))  getPoints(kde)	: Ndim x Npoints array of kernel locations  adjustPoints(p,delta) : shift points of P by delta (by reference!)  getWeights		: [1 x Npts] array of kernel weights  adjustWeights		: set kernel weights (by reference!)  rescale(kde,alpha)	: rescale a KDE by the (vector) alpha  getDim		: get the dimension of the data  getNpts		: get the # of kernel locations  getNeff		: "effective" # of kernels (accounts for non-uniform weights)  sample(P,Np,KSType)	: draw Np new samples from P and set BW according to KSTypeDisplay: (visualization / Description)=====================================================  plot(kde...)		: plot the specified dimensions of the KDE locations  hist(kde...)		: discretize the kde at uniform bin lengths  display		: text output describing the KDE  double		: boolean evaluation of the KDE (non-empty)Statistics:  (useful stats & operations on a kde)=====================================================  covar			: find the (weighted) covariance of the kernel centers  mean			: find the (weighted) mean of the kernel centers  modes			: (attempt to) find the modes of the distribution  knn(kde, points, k)   : find the k nearest neighbors of each of			    points in kde  entropy		: estimate the entropy of the KDE          ??? Maybe be able to specify alternate entropy estimates? Distance, etc?  kld			: estimate divergence between two KDEs  ise			: eval/estimate integrated square difference between two KDEs  evaluate(kde, x[,tol]): evaluate KDE at a set of points x  evaluate(p, p2 [,tol]):  "" "", x = p2.pts (if we've already built a tree)  evalIFGT(kde, x, N)   : same as above, but use the (very fast) Nth order improved   evalIFGT(p, p2, N)    : Fast Gauss transform.  Req's uniform-BW Gaussian kernels.    evalAvgLogL(kde, x)	: compute Mean( log( evaluate(kde, x) ))  evalAvgLogL(kde, kde2):   "" "" but use the weights of kde2  evalAvgLogL(kde)      : self-eval; leave-one-out option  llGrad(p,q)		: find the gradient of log-likelihood for p			    evaluated at the points of q  llHess(p,q)		: find the Hessian of log-likelihood of p at q  entropyGrad(p)	: estimate gradient of entropy (uses llGrad)  miGrad(p,dim)		: "" for mutual information between p(dim), p(~dim)  klGrad(p1,p2) 	: estimate gradient direction of KL-divergenceMixture products: (NBP stuff)=====================================================GAUSSIAN KERNELS ONLYproductApprox		: accessor for other product methods  prodSampleExact	: sample N points exactly (N^d computation)  prodSampleEpsilon	: kd-tree epsilon-exact sampler  prodSampleGibbs1	: seq. index gibbs sampler  prodSampleGibbs2	: product of experts gibbs sampler  prodSampleGibbsMS1	: multiresolution version of GS1  prodSampleGibbsMS2	: multiresolution version of GS2  prodSampleImportance 	: importance sampling  prodSampleImportGauss	: gaussian importance samplingproductExact		: exact computation (N^d kernel centers)=====================================================USAGE EXAMPLES=====================================================The demonstration programs @kde/examples/demo_kde_#.m may be helpful.=====================================================COPYRIGHT / LICENSE=====================================================The kde package and all code were written by Alex Ihler and Mike Mandel,and are copyrighted under the (lesser) GPL:  Copyright (C) 2003  Alexander IhlerThis program is free software; you can redistribute it and/ormodify it under the terms of the GNU Lesser General Public Licenseas published by the Free Software Foundation; version 2.1 or later.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU Lesser General Public License for more details.You should have received a copy of the GNU Lesser General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.The authors may be contacted via email at: ihler@mit.edu

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美精品一区二区三区四区| 日本不卡一二三| 日韩精彩视频在线观看| 国产在线精品一区二区不卡了| 色94色欧美sute亚洲线路一久| 精品少妇一区二区三区在线播放| 一区二区三区丝袜| 国产一区二三区| 3atv在线一区二区三区| 国产精品妹子av| 九色|91porny| 6080日韩午夜伦伦午夜伦| 国产精品久久久久久久久免费相片 | www.久久久久久久久| 日韩亚洲国产中文字幕欧美| 亚洲欧美激情一区二区| 国产一区在线不卡| 91精品欧美综合在线观看最新| 1024成人网| 国产成人精品免费网站| 久久丝袜美腿综合| 日韩国产精品久久久久久亚洲| 一本大道久久a久久精品综合| 久久久久国产一区二区三区四区| 日本欧洲一区二区| 欧美高清视频在线高清观看mv色露露十八| 国产精品成人午夜| 岛国一区二区在线观看| 久久久午夜电影| 国产专区欧美精品| 久久色在线观看| 国内不卡的二区三区中文字幕 | 免费成人在线观看| 日韩亚洲电影在线| 蜜桃久久久久久| 91精品在线免费观看| 日韩成人伦理电影在线观看| 777奇米四色成人影色区| 视频精品一区二区| 日韩欧美一卡二卡| 韩国毛片一区二区三区| 久久久久久久久岛国免费| 激情久久久久久久久久久久久久久久| 精品免费视频.| 国产91精品一区二区麻豆亚洲| 国产免费成人在线视频| voyeur盗摄精品| 亚洲男人天堂av| 在线欧美小视频| 日韩av二区在线播放| 日韩精品中文字幕一区二区三区 | 成人黄色网址在线观看| 国产精品人妖ts系列视频| 91麻豆自制传媒国产之光| 一二三区精品视频| 在线电影一区二区三区| 激情综合五月天| 国产精品国产三级国产普通话99 | 亚洲va欧美va人人爽午夜| 欧美一区二区三区免费大片| 热久久久久久久| 亚洲国产精品成人综合| 91福利精品第一导航| 日本亚洲三级在线| 久久九九久久九九| 欧美性色aⅴ视频一区日韩精品| 婷婷开心激情综合| 国产性做久久久久久| 欧洲亚洲精品在线| 久久99精品久久久久久| 亚洲图片激情小说| 欧美成人vr18sexvr| 成人国产一区二区三区精品| 亚洲成人在线观看视频| 国产欧美日韩麻豆91| 欧美日韩午夜在线视频| 国产一区二区91| 亚洲国产精品久久人人爱| 久久这里都是精品| 欧美日韩一区国产| jlzzjlzz欧美大全| 麻豆一区二区三区| 依依成人综合视频| 欧美国产日韩一二三区| 欧美日本一道本在线视频| 成人在线视频首页| 精品一区二区三区视频在线观看| 综合久久久久久久| 久久久蜜桃精品| 日韩一区二区电影| 欧美中文字幕一区二区三区| 国产成人午夜精品影院观看视频 | 91精品国产综合久久小美女| 色综合天天性综合| 国产盗摄精品一区二区三区在线| 丝袜脚交一区二区| 中文字幕综合网| 中文字幕+乱码+中文字幕一区| 欧美一区二区三区日韩视频| 91极品视觉盛宴| 色欧美片视频在线观看在线视频| 国产高清亚洲一区| 紧缚捆绑精品一区二区| 免费在线一区观看| 亚洲成人免费观看| 亚洲在线视频一区| 亚洲精品ww久久久久久p站 | av一区二区三区黑人| 国产精品 日产精品 欧美精品| 麻豆精品久久久| 秋霞电影一区二区| 奇米色一区二区| 日本欧美在线观看| 日韩精品亚洲专区| 日本视频免费一区| 麻豆久久久久久久| 久久成人久久爱| 国内精品不卡在线| 国产露脸91国语对白| 国产自产2019最新不卡| 黑人巨大精品欧美一区| 国产在线不卡视频| 成人黄色电影在线 | 国产又黄又大久久| 国产高清成人在线| av日韩在线网站| 色8久久人人97超碰香蕉987| 91久久精品一区二区二区| 欧美日韩日日夜夜| 日韩欧美一区电影| 欧美精品一区二区三区四区 | 亚洲欧美日韩精品久久久久| 一区二区三区自拍| 五月婷婷久久综合| 精品制服美女丁香| 成人激情小说乱人伦| 在线视频一区二区三区| 欧美精品亚洲二区| 精品少妇一区二区三区日产乱码| 久久久久久久精| 亚洲少妇30p| 日韩精品国产欧美| 精品一区二区三区影院在线午夜| 国产91对白在线观看九色| 91麻豆免费看片| 欧美一区二区三区视频免费播放 | 亚洲与欧洲av电影| 免费精品视频在线| 成人av资源在线| 在线影院国内精品| 久久久亚洲高清| 一区二区理论电影在线观看| 日韩精彩视频在线观看| 懂色中文一区二区在线播放| 欧美一a一片一级一片| 精品久久人人做人人爽| 亚洲欧美日韩久久| 国内成人精品2018免费看| 91黄色免费观看| 久久久五月婷婷| 天天操天天综合网| 成人免费视频免费观看| 91精品国产91久久综合桃花| 国产精品久久夜| 精品一区二区三区久久久| 色视频成人在线观看免| 精品国产一二三区| 亚洲影视资源网| 国产成人精品午夜视频免费| 欧美一级艳片视频免费观看| 中文字幕亚洲精品在线观看| 国产最新精品免费| 欧美肥妇bbw| 亚洲最快最全在线视频| 国产精品夜夜爽| 欧美刺激午夜性久久久久久久| 亚洲欧美日本在线| 国内久久婷婷综合| 欧美日韩另类一区| 亚洲天堂久久久久久久| 国产精品白丝jk白祙喷水网站| 欧美日本韩国一区| 伊人一区二区三区| 粉嫩一区二区三区性色av| 欧美一区二区视频在线观看2022 | 91麻豆免费在线观看| 亚洲国产精品国自产拍av| 美女被吸乳得到大胸91| 欧美日韩国产片| 亚洲美女屁股眼交3| 成人app在线| 国产精品久久久久影视| 国产不卡视频在线观看| 欧美精品一区二区蜜臀亚洲| 免费看欧美美女黄的网站| 在线91免费看| 奇米精品一区二区三区在线观看 | 麻豆精品一区二区av白丝在线| 欧美日韩国产一二三| 亚洲最大成人综合|