?? init.m
字號:
function net=init(net)
%INIT Initialize a neural network.
%
% Syntax
%
% net = init(net)
%
% Description
%
% INIT(NET) returns neural network NET with weight and bias values
% updated according to the network initialization function, indicated
% by NET.initFcn, and the parameter values, indicated by NET.initParam.
%
% Examples
%
% Here a perceptron is created with a 2-element input (with ranges
% of 0 to 1, and -2 to 2) and 1 neuron. Once it is created we can display
% the neuron's weights and bias.
%
% net = newp([0 1;-2 2],1);
% net.iw{1,1}
% net.b{1}
%
% Training the perceptron alters its weight and bias values.
%
% P = [0 1 0 1; 0 0 1 1];
% T = [0 0 0 1];
% net = train(net,P,T);
% net.iw{1,1}
% net.b{1}
%
% INIT reinitializes those weight and bias values.
%
% net = init(net);
% net.iw{1,1}
% net.b{1}
%
% The weights and biases are zeros again, which are the initial values
% used by perceptron networks (see NEWP).
%
% Algorithm
%
% INIT calls NET.initFcn to initialize the weight and bias values
% according to the parameter values NET.initParam.
%
% Typically, NET.initFcn is set to 'initlay' which initializes each
% layer's weights and biases according to its NET.layers{i}.initFcn.
%
% Backpropagation networks have NET.layers{i}.initFcn set to 'initnw'
% which calculates the weight an bias values for layer i using the
% Nguyen-Widrow initialization method.
%
% Other networks have NET.layers{i}.initFcn set to 'initwb', which
% initializes each weight and bias with its own initialization function.
% The most common weight and bias initialization function is RANDS
% which generates random values between -1 and 1.
%
% See also REVERT, SIM, ADAPT, TRAIN, INITLAY, INITNW, INITWB, RANDS.
% Mark Beale, 11-31-97
% Copyright 1992-2002 The MathWorks, Inc.
% $Revision: 1.9 $ $Date: 2002/04/14 21:28:54 $
net = struct(net);
initFcn = net.initFcn;
if length(initFcn)
net = feval(initFcn,net);
end
% Warn user of constant inputs
for i=1:net.numInputs
prange = net.inputs{i}.range;
if (any(prange(:,1) == prange(:,2)))
fprintf('\n')
fprintf('** Warning in INIT\n')
fprintf('** Network "input{%g}.range" has a row with equal min and max values.\n',i)
fprintf('** Constant inputs do not provide useful information.\n')
fprintf('\n')
end
end
% Save values for future calls to REVERT
net.revert.IW = net.IW;
net.revert.LW = net.LW;
net.revert.b = net.b;
net = class(net,'network');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -