亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? network.m

?? RBF網絡逼近、RBF-建模、RBF網絡訓練與測試程序
?? M
字號:
function net=network(numInputs,numLayers,biasConnect,inputConnect, ...
  layerConnect,outputConnect,targetConnect)
%NETWORK Create a custom neural network.
%
%  Synopsis
%
%    net = network
%    net = network(numInputs,numLayers,biasConnect,inputConnect,
%      layerConnect,outputConnect,targetConnect)
%
%  Description
%
%    NETWORK creates new custom networks.  It is used to create
%    networks that are then customized by functions such as NEWP,
%    NEWLIN, NEWFF, etc.
%
%    NETWORK takes these optional arguments (shown with default values):
%      numInputs     - Number of inputs, 0.
%      numLayers     - Number of layers, 0.
%      biasConnect   - numLayers-by-1 Boolean vector, zeros.
%      inputConnect  - numLayers-by-numInputs Boolean matrix, zeros.
%      layerConnect  - numLayers-by-numLayers Boolean matrix, zeros.
%      outputConnect - 1-by-numLayers Boolean vector, zeros.
%      targetConnect - 1-by-numLayers Boolean vector, zeros.
%    and returns,
%      NET           - New network with the given property values.
%
%  Properties
%
%    Architecture properties:
%
%      net.numInputs: 0 or a positive integer.
%        Number of inputs.
%      net.numLayers: 0 or a positive integer.
%        Number of layers.
%      net.biasConnect: numLayer-by-1 Boolean vector.
%        If net.biasConnect(i) is 1 then the layer i has a bias and
%        net.biases{i} is a structure describing that bias.
%      net.inputConnect: numLayer-by-numInputs Boolean vector.
%        If net.inputConnect(i,j) is 1 then layer i has a weight coming from
%        input j and net.inputWeights{i,j} is a structure describing that weight.
%      net.layerConnect: numLayer-by-numLayers Boolean vector.
%        If net.layerConnect(i,j) is 1 then layer i has a weight coming from
%        layer j and net.layerWeights{i,j} is a structure describing that weight.
%       net.outputConnect: 1-by-numLayers Boolean vector.
%        If net.outputConnect(i) is 1 then the network has an output from
%        layer i and net.outputs{i} is a structure describing that output.
%       net.targetConnect: 1-by-numLayers Boolean vector.
%        if net.outputConnect(i) is 1 then the network has a target from
%        layer i and net.targets{i} is a structure describing that target.
%      net.numOutputs: 0 or a positive integer. Read only.
%        Number of network outputs according to net.outputConnect.
%      net.numTargets: 0 or a positive integer. Read only.
%        Number of targets according to net.targetConnect.
%      net.numInputDelays: 0 or a positive integer. Read only.
%        Maximum input delay according to all net.inputWeight{i,j}.delays.
%      net.numLayerDelays: 0 or a positive number. Read only.
%        Maximum layer delay according to all net.layerWeight{i,j}.delays.
%
%  Subobject structure properties:
%
%      net.inputs: numInputs-by-1 cell array.
%        net.inputs{i} is a structure defining input i:
%      net.layers: numLayers-by-1 cell array.
%        net.layers{i} is a structure defining layer i:
%       net.biases: numLayers-by-1 cell array.
%        if net.biasConnect(i) is 1, then net.biases{i} is a structure
%        defining the bias for layer i.
%      net.inputWeights: numLayers-by-numInputs cell array.
%        if net.inputConnect(i,j) is 1, then net.inputWeights{i,j} is a
%        structure defining the weight to layer i from input j.
%      net.layerWeights: numLayers-by-numLayers cell array.
%        if net.layerConnect(i,j) is 1, then net.layerWeights{i,j} is a
%        structure defining the weight to layer i from layer j.
%      net.outputs: 1-by-numLayers cell array.
%        if net.outputConnect(i) is 1, then net.outputs{i} is a structure
%        defining the network output from layer i.
%      net.targets: 1-by-numLayers cell array.
%        if net.targetConnect(i) is 1, then net.targets{i} is a structure
%        defining the network target to layer i.
%
%    Function properties:
%
%      net.adaptFcn: name of a network adaption function or ''.
%      net.initFcn: name of a network initialization function or ''.
%      net.performFcn: name of a network performance function or ''.
%      net.trainFcn: name of a network training function or ''.
%
%    Parameter properties:
%
%      net.adaptParam: network adaption parameters.
%      net.initParam: network initialization parameters.
%      net.performParam: network performance parameters.
%      net.trainParam: network training parameters.
%
%    Weight and bias value properties:
%
%      net.IW: numLayers-by-numInputs cell array of input weight values.
%      net.LW: numLayers-by-numLayers cell array of layer weight values.
%      net.b: numLayers-by-1 cell array of bias values.
%
%    Other properties:
%
%      net.userdata: structure you can use to store useful values.
%
%  Examples
%
%    Here is how the code to create a network without any inputs and layers,
%    and then set its number of inputs and layer to 1 and 2 respectively.
%
%      net = network
%      net.numInputs = 1
%      net.numLayers = 2
%
%    Here is the code to create the same network with one line of code.
%
%      net = network(1,2)
%
%    Here is the code to create a 1 input, 2 layer, feed-forward network.
%    Only the first layer will have a bias.  An input weight will
%    connect to layer 1 from input 1.  A layer weight will connect
%    to layer 2 from layer 1.  Layer 2 will be a network output,
%    and have a target.
%
%      net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1],[0 1])
%
%    We can then see the properties of subobjects as follows:
%
%      net.inputs{1}
%      net.layers{1}, net.layers{2}
%      net.biases{1}
%      net.inputWeights{1,1}, net.layerWeights{2,1}
%      net.outputs{2}
%      net.targets{2}
%
%    We can get the weight matrices and bias vector as follows:
%
%      net.iw{1,1}, net.iw{2,1}, net.b{1}
%
%    We can alter the properties of any of these subobjects.  Here
%    we change the transfer functions of both layers:
%
%      net.layers{1}.transferFcn = 'tansig';
%      net.layers{2}.transferFcn = 'logsig';
%
%    Here we change the number of elements in input 1 to 2, by setting
%     each element's range:
%
%      net.inputs{1}.range = [0 1; -1 1];
%
%    Next we can simulate the network for a 2-element input vector:
%
%      p = [0.5; -0.1];
%      y = sim(net,p)
%
%  See also INIT, REVERT, SIM, ADAPT, TRAIN.

%  Mark Beale, 11-31-97
%  Copyright 1992-2002 The MathWorks, Inc.
% $Revision: 1.9 $ $Date: 2002/04/14 21:28:57 $

% SPECIAL CASE - Remaking a network from a struct
if (nargin == 1) & isa(numInputs,'struct')
  net = class(numInputs,'network');
  return
end

% DEFAULT ARGUMENTS
if nargin < 1
  numInputs = 0;
end
if ~isposint(numInputs)
  error('NumInputs must be 0 or a positive integer.')
end
if nargin < 2
  numLayers = 0;
end
if ~isposint(numLayers)
  error('NumLayers must be 0 or a positive integer.')
end
if nargin < 3
  biasConnect = zeros(numLayers,1);
end
if ~isbool(biasConnect,numLayers,1)
  error('BiasConnect must be a NumLayers-by-1 boolean matrix.')
end
if nargin < 4
  inputConnect = zeros(numLayers,numInputs);
end
if ((numLayers == 0) | (numInputs == 0)) & (prod(size(inputConnect)) == 0)
  inputConnect = zeros(numLayers,numInputs);
end
if ~isbool(inputConnect,numLayers,numInputs)
  error('InputConnect must be a NumLayers-by-NumInputs boolean matrix.')
end
if nargin < 5
  layerConnect = zeros(numLayers,numLayers);
end
if (numLayers == 0) & (prod(size(layerConnect)) == 0)
  layerConnect = zeros(0,0);
end
if ~isbool(layerConnect,numLayers,numLayers)
  error('LayerConnect must be a NumLayers-by-NumLayers boolean matrix.')
end
if nargin < 6
  outputConnect = zeros(1,numLayers);
end
if ~isbool(outputConnect,1,numLayers)
  error('OutputConnect must be a 1-by-NumLayers boolean matrix.')
end

if nargin < 7
  targetConnect = zeros(1,numLayers);
end
if ~isbool(targetConnect,1,numLayers)
  error('TargetConnect must be a 1-by-NumLayers boolean matrix.')
end

% NULL NETWORK
net.numInputs = 0;
net.numLayers = 0;
net.numInputDelays = 0;
net.numLayerDelays = 0;
net.biasConnect = [];
net.inputConnect = [];
net.layerConnect = [];
net.outputConnect = [];
net.targetConnect = [];
net.numOutputs = 0;
net.numTargets = 0;
net.inputs = cell(0,1);
net.layers = cell(0,1);
net.biases = cell(0,1);
net.inputWeights = cell(0,0);
net.layerWeights = cell(0,0);
net.outputs = cell(1,0);
net.targets = cell(1,0);
net.adaptFcn = '';
net.adaptParam = [];
net.initFcn = '';
net.initParam = [];
net.performFcn = '';
net.performParam = [];
net.trainFcn = '';
net.trainParam = [];
net.IW = {};
net.LW = {};
net.b = cell(0,1);
net.userdata.note = 'Put your custom network information here.';
net.hint.ok = 0;
net.revert.IW = {};
net.revert.LW = {};
net.revert.b = {};

% CLASS
net = class(net,'network');

% INSURE HINTS ARE CREATED
net.b = net.b;

% ARCHITECTURE
net = setnet(net,'numInputs',numInputs);
net = setnet(net,'numLayers',numLayers);
net = setnet(net,'biasConnect',biasConnect);
net = setnet(net,'inputConnect',inputConnect);
net = setnet(net,'layerConnect',layerConnect);
net = setnet(net,'outputConnect',outputConnect);
net = setnet(net,'targetConnect',targetConnect);

% ====================================================

function net = setnet(net,field,value)

subscripts.type = '.';
subscripts.subs = field;
net = subsasgn(net,subscripts,value);

% ====================================================

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩精品免费| 午夜精品福利一区二区三区av| 天天综合网 天天综合色| 一本一道综合狠狠老| 国产精品麻豆视频| 岛国精品在线播放| 国产精品视频免费| 国产91精品入口| 亚洲欧洲国产日韩| 91丨porny丨在线| 亚洲国产日韩av| 欧美理论片在线| 欧美a一区二区| 精品国产不卡一区二区三区| 国产另类ts人妖一区二区| 国产欧美日韩在线看| 色综合一区二区| 蜜臀久久久99精品久久久久久| 日韩久久免费av| 成人高清av在线| 亚洲国产一区在线观看| 日韩一区二区在线免费观看| 国产高清不卡一区| 一区二区三区在线视频观看58| 91精品久久久久久久99蜜桃 | 日韩国产高清在线| 久久综合狠狠综合久久激情| 91在线观看成人| 精品亚洲porn| **网站欧美大片在线观看| 欧美一区二区三区免费大片| 国产一区二区三区在线观看免费| 一区二区三区在线视频免费| 日韩视频一区二区三区| 91捆绑美女网站| 国产精品综合av一区二区国产馆| 亚洲激情校园春色| 国产精品午夜免费| 精品久久久久久久一区二区蜜臀| 在线观看不卡一区| 国产成人免费在线观看不卡| 蜜臀久久99精品久久久久宅男| 亚洲老妇xxxxxx| 亚洲天堂精品视频| 国产精品久久久久久久岛一牛影视 | 欧美一区二区三区在线看| 色综合久久久久久久| 北条麻妃国产九九精品视频| 精品一区二区三区日韩| 久久国产日韩欧美精品| 丝袜亚洲另类欧美| 石原莉奈一区二区三区在线观看| 亚洲精品一二三区| 亚洲色图欧美激情| 亚洲视频免费在线观看| 亚洲精品国久久99热| 亚洲自拍偷拍综合| 香蕉影视欧美成人| 免费看日韩a级影片| 国精产品一区一区三区mba桃花 | 日韩av午夜在线观看| 美日韩一级片在线观看| 国产精品一区免费视频| 丁香激情综合国产| 91色九色蝌蚪| 欧美欧美欧美欧美| 日韩女优视频免费观看| 国产精品久久久久久亚洲伦| 亚洲综合清纯丝袜自拍| 久久99精品一区二区三区三区| 国内精品伊人久久久久av影院 | 国产69精品久久777的优势| 成人爽a毛片一区二区免费| 91看片淫黄大片一级在线观看| 欧美欧美欧美欧美| 国产精品乱码一区二三区小蝌蚪| 亚洲精品午夜久久久| 国内精品国产成人国产三级粉色| 波多野结衣亚洲一区| 日韩一级片网站| 偷拍一区二区三区四区| 97aⅴ精品视频一二三区| 中文字幕av资源一区| 亚洲国产一区二区在线播放| 91尤物视频在线观看| 国产精品久久午夜| 99天天综合性| 一区二区三区影院| 777亚洲妇女| 日本不卡一区二区三区高清视频| 在线视频欧美精品| 美女视频黄 久久| 国产欧美视频一区二区| av网站免费线看精品| 五月激情六月综合| 久久久久久久久伊人| 色婷婷一区二区| 蜜乳av一区二区| 最新成人av在线| 欧美肥大bbwbbw高潮| 久久国产视频网| 一区二区三区波多野结衣在线观看| 4438x亚洲最大成人网| 国产99久久久国产精品免费看 | 亚洲色图欧洲色图| 成人手机电影网| 视频一区二区中文字幕| 中文字幕成人av| 日韩欧美一区二区三区在线| 91丝袜美女网| 国产乱码精品一区二区三区五月婷 | 久久久99久久| 亚洲成人自拍一区| 成人综合在线视频| 欧美一级在线视频| 美女视频网站黄色亚洲| 欧美日韩国产精品成人| 中文字幕字幕中文在线中不卡视频| 蜜臀91精品一区二区三区 | 日韩美女视频一区| 国内精品伊人久久久久av影院| 日韩欧美一级精品久久| 久久91精品久久久久久秒播| 欧洲av在线精品| 视频一区二区三区中文字幕| 欧美日韩aaaaaa| 免费美女久久99| 777久久久精品| 国产精品亚洲综合一区在线观看| 欧美一二三区在线| 精品一区二区三区免费| 精品美女在线播放| 日韩精品一区二区在线| 国产一区二区三区久久悠悠色av| 日本不卡在线视频| 国产精品美日韩| 白白色亚洲国产精品| 亚洲激情综合网| 日韩黄色小视频| 日韩欧美一二三四区| 成人高清免费观看| 亚洲成a人片在线观看中文| 日本一区二区动态图| 亚洲大型综合色站| 成人免费视频播放| 欧美久久久久免费| 香蕉影视欧美成人| 5月丁香婷婷综合| 麻豆精品国产传媒mv男同| 日韩一区二区在线看片| 精品在线播放免费| 中文字幕精品三区| 一本一道久久a久久精品综合蜜臀| 亚洲精品视频在线观看网站| 99国产精品99久久久久久| 国产成人精品免费视频网站| 爽爽淫人综合网网站| 亚洲精选在线视频| 亚洲丝袜制服诱惑| 亚洲美女免费在线| 欧美极品aⅴ影院| 日韩三级视频在线观看| 欧美系列一区二区| 国产黄人亚洲片| 国产麻豆一精品一av一免费| 蜜桃一区二区三区在线观看| 高清国产午夜精品久久久久久| 精品乱人伦一区二区三区| 91福利在线免费观看| 中文字幕在线免费不卡| 欧美日韩激情一区二区三区| 老汉av免费一区二区三区| 国产欧美一区二区三区在线老狼| 一本高清dvd不卡在线观看| 视频精品一区二区| 国产蜜臀av在线一区二区三区| 色婷婷久久久亚洲一区二区三区| 日韩成人免费电影| 国产精品久久一级| 69p69国产精品| 成人免费观看av| 亚洲bt欧美bt精品777| 国产午夜久久久久| 欧美色偷偷大香| 国产不卡一区视频| 午夜久久久久久电影| 国产日韩欧美电影| 在线成人免费视频| av资源站一区| 狠狠色丁香婷综合久久| 久久精品国产在热久久| 国产精品国产三级国产aⅴ原创| 欧美疯狂做受xxxx富婆| eeuss鲁片一区二区三区| 久99久精品视频免费观看| 亚洲资源中文字幕| 亚洲国产精品二十页| 91精品国产色综合久久ai换脸 | av在线播放一区二区三区| 日韩和欧美一区二区三区|