?? new_rs_erasures.c
字號:
if (discr_r == 0){
/* 3 lines below: B(x) <-- x*B(x) */
tmp_pol[0] = 0;
for (i=1;i < 2*tt+1;i++) tmp_pol[i] = b[i-1];
for (i=0;i < 2*tt+1;i++) b[i] = tmp_pol[i];
}
else{
/* 5 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
T[0] = lambda[0];
for (i=1;i < 2*tt+1;i++){
tmp = (b[i-1] == 0)? 0 : alpha_to[(index_of[discr_r]+index_of[b[i-1]])%nn];
T[i] = lambda[i]^tmp;
}
if (2*L <= r+no_eras-1){
L = r+no_eras-L;
/* 2 lines below: B(x) <-- inv(discr_r) * lambda(x) */
for (i=0;i < 2*tt+1;i++)
b[i] = (lambda[i] == 0)? 0 : alpha_to[(index_of[lambda[i]]-index_of[discr_r]+nn)%nn];
for (i=0;i < 2*tt+1;i++) lambda[i] = T[i];
}
else{
for (i=0;i < 2*tt+1;i++) lambda[i] = T[i];
/* 3 lines below: B(x) <-- x*B(x) */
tmp_pol[0] = 0;
for (i=1;i < 2*tt+1;i++) tmp_pol[i] = b[i-1];
for (i=0;i < 2*tt+1;i++) b[i] = tmp_pol[i];
}
}
}
/* Put lambda(x) into index form */
for (i=0; i < 2*tt+1; i++)
lambda[i] = index_of[lambda[i]];
/* Compute deg(lambda(x)) */
deg_lambda = 2*tt;
while ((lambda[deg_lambda] == -1) && (deg_lambda > 0))
--deg_lambda;
if (deg_lambda <= 2*tt){
/* Find roots of the error+erasure locator polynomial. By Chien Search */
for (i=1; i < 2*tt+1; i++) reg[i] = lambda[i] ;
count = 0 ; /* Number of roots of lambda(x) */
for (i=1; i <= nn; i++)
{ q = 1 ;
for (j=1; j <= deg_lambda; j++)
if (reg[j] != -1)
{ reg[j] = (reg[j]+j)%nn ;
q ^= alpha_to[(reg[j])%nn] ;
} ;
if (!q) /* store root (index-form) and error location number */
{ root[count] = i;
loc[count] = nn-i;
count++;
};
} ;
#ifndef NO_PRINT
printf("\n Final error positions:\t");
for (i=0;i < count;i++) printf("%d ",loc[i]);
printf("\n");
#endif
if (deg_lambda == count){ /* correctable error */
/* Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo x**(nn-kk)). in poly-form */
for (i=0;i < 2*tt;i++){
omega[i] = 0;
for (j=0;(j < deg_lambda+1) && (j < i+1);j++){
if ((s[i+1-j] != -1) && (lambda[j] != -1))
tmp = alpha_to[(s[i+1-j]+lambda[j])%nn];
else
tmp = 0;
omega[i] ^= tmp;
}
}
omega[2*tt] = 0;
/* Compute lambda_pr(x) = formal derivative of lambda(x) in poly-form */
for (i=0;i < tt;i++){
lambda_pr[2*i+1] = 0;
lambda_pr[2*i] = (lambda[2*i+1] == -1)? 0 : alpha_to[lambda[2*i+1]];
}
lambda_pr[2*tt] = 0;
/* Compute deg(omega(x)) */
deg_omega = 2*tt;
while ((omega[deg_omega] == 0) && (deg_omega > 0))
--deg_omega;
/* Compute error values in poly-form. num1 = omega(inv(X(l))),
num2 = inv(X(l))**(b0-1) and den = lambda_pr(inv(X(l))) all in poly-form */
for (j=0;j < count;j++){
pres_root = root[j];
pres_loc = loc[j];
num1 = 0;
for (i=0;i < deg_omega+1;i++){
if (omega[i] != 0)
tmp = alpha_to[(index_of[omega[i]]+i*pres_root)%nn];
else
tmp = 0;
num1 ^= tmp;
}
num2 = alpha_to[(pres_root*(b0-1))%nn];
den = 0;
for (i=0;i < deg_lambda+1;i++){
if (lambda_pr[i] != 0)
tmp = alpha_to[(index_of[lambda_pr[i]]+i*pres_root)%nn];
else
tmp = 0;
den ^= tmp;
}
if (den == 0){
printf("\n ERROR: denominator = 0\n");
}
err[pres_loc] = 0;
if (num1 != 0){
err[pres_loc] = alpha_to[(index_of[num1]+index_of[num2]+(nn-index_of[den]))%nn];
}
}
/* Correct word by subtracting out error bytes. First convert recd[] into poly-form */
for (i=0;i < nn;i++) recd[i] = (recd[i] == -1)? 0 : alpha_to[recd[i]];
for (j=0;j < count;j++)
recd[loc[j]] ^= err[loc[j]];
return(1);
}
else /* deg(lambda) unequal to number of roots => uncorrectable error detected */
return(2);
}
else /* deg(lambda) > 2*tt => uncorrectable error detected */
return(3);
}
else{ /* no non-zero syndromes => no errors: output received codeword */
for (i=0; i < nn; i++){
if (recd[i] != -1) /* convert recd[] to polynomial form */
recd[i] = alpha_to[(recd[i])%nn];
else
recd[i] = 0;
}
return(0);
}
}
/*
Generates the Galois field and then the generator polynomial.
Must be recompiled for each different generator polynomial after
setting parameters at the top of this file.
*/
main()
{
int i,j,no_cws,nn_short,kk_short,byte,error_byte,no_ch_errs,iter,error_flag;
int received[1000],cw[1000],decode_flag,no_decoder_errors;
long seed;
unsigned short int tmp;
char cw_file[30],file_in[30];
FILE *fp_out,*fp;
/**** Storage for random seed ****/
unsigned short int store[3];
long int nrand48();
double x,erand48(),prob_symb_err;
void srand48();
/* Generate the Galois field GF(2**mm) */
printf("Generating the Galois field GF(%d)\n\n",n);
generate_gf();
#ifdef DEBUG
printf("Look-up tables for GF(2**%2d)\n",mm) ;
printf("i\t\t alpha_to[i]\t index_of[i]\n") ;
for (i=0; i < n; i++)
printf("%3d \t\t %#x \t\t %d\n",i,alpha_to[i],index_of[i]) ;
printf("\n The polynomial-form representation of @**i, 0 <= i < %d \n",n);
printf("is obtained as follows: It is given by the binary representation of \n");
printf("the integer alpha_to[i] with LS-Bit corresponding to @**0\n");
printf("and the next bit to @**1 and so on.\n");
printf("\n The index of a Galois field element x whose polynomial-form \n");
printf("representation is the binary representation of integer \n");
printf("j, 0 <= j < %d is given by the integer index_of[j]\n",n);
printf("Therefore, @**j = x \n");
printf("\n EXAMPLES IN GF(256) \n");
printf("The polynomial-form of @^8 is the binary representation of the integer alpha_to[8] viz. 0x1d. i.e., @**8 = @**4 + @**3 + @**2 + @**0 \n");
printf("The index of x whose polynomial-form is 0x72 (integer 155) is index_of[155] = 217, so @**217 = x \n");
#endif
printf("Enter b0 = index of the first root \n");
scanf("%d",&b0);
gen_poly();
printf("\n g(x) of the %d-error correcting RS (%d,%d) code: \n",tt,nn,kk);
printf("Coefficient is the exponent of @ = primitive element\n");
for (i=0;i <= nn-kk ;i++){
printf("%d x^%d ",gg[i],i);
if (i < nn-kk) printf(" + ");
if (i && (i % 7 == 0)) printf("\n"); /* 8 coefficients per line */
}
printf("\n");
printf("\n Coefficient is the representation in basis {@^%d,...,@,1}\n",mm-1);
for (i=0;i <= nn-kk ;i++){
printf("%#x x^%d ",alpha_to[gg[i]],i);
if (i < nn-kk) printf(" + ");
if (i && (i % 7 == 0)) printf("\n"); /* 8 coefficients per line */
}
printf("\n\n");
#ifdef ENCODE
printf("Enter length of the shortened code\n");
scanf("%d",&nn_short);
if ((nn_short < 2*tt) || (nn_short > nn)){
printf("Invalid entry %d for shortened length\n",nn_short);
exit();
}
kk_short = kk - (nn-nn_short); /* compute dimension of shortened code */
printf("The (%d,%d) %d-error correcting RS code\n",nn_short,kk_short,tt);
printf("Enter the number of codewords desired \n");
scanf("%d",&no_cws);
printf("Enter the filename for storing cws\n");
scanf("%s",cw_file);
printf("Enter 3 positive integers as seed \n");
for (i=0;i < 3;i++){ scanf("%hu",&tmp);store[i] = tmp;}
if ((fp_out = fopen(cw_file,"w")) == NULL){
printf("Could not open %s\n",cw_file);
exit();
}
/**** BEGIN: Encoding random information vectors ****/
/* Pad with zeros rightmost (kk-kk_short) positions */
for (j=kk_short;j < kk;j++) data[j] = 0;
for (i=0;i < no_cws;i++){
for (j=0;j < (int)kk_short;j++) data[j] = (int) (nrand48(store) % 256);
encode_rs();
for (j=0;j < (int)nn_short-(int)kk_short;j++) /* parity bytes first */
fprintf(fp_out,"%02x ",bb[j]);
for (j=0;j < (int)kk_short;j++) /* info bytes last */
fprintf(fp_out,"%02x ",data[j]);
fprintf(fp_out,"\n");
}
fclose(fp_out);
#endif
#ifdef DECODE
printf("Enter length of the shortened code\n");
scanf("%d",&nn_short);
if ((nn_short < 2*tt) || (nn_short > nn)){
printf("Invalid entry %d for shortened length\n",nn_short);
exit();
}
kk_short = kk - (nn-nn_short); /* compute dimension of shortened code */
printf("The (%d,%d) %d-error correcting RS code\n",nn_short,kk_short,tt);
printf("Enter a random positive integer\n");
scanf("%ld",&seed);
srand48(seed);
printf("Enter filename from which to read codewords\n"); scanf("%s",file_in);
printf("Enter no of codewords \n"); scanf("%d",&no_cws);
if ((fp = fopen(file_in,"r")) == NULL){
printf("Could not open %s\n",file_in);
exit();
}
prob_symb_err = (double)tt/ (8.0 * (double)nn_short);
/* CHANGE above probablity of symbol error if desired */
/* printf("Probability of symbol error = %6e\n",prob_symb_err);*/
no_decoder_errors = 0;
iter = -1;
while (++iter < no_cws){
/* read in codewords from file */
for (i=0;i < nn_short;i++){
fscanf(fp,"%02x ",&byte);
cw[i] = byte;
}
/* printf("The Transmitted Codeword\n");
for (i=0;i < nn_short;i++) printf("%02x ",cw[i]); printf("\n");*/
#ifndef NO_PRINT
printf("\n\n\n\n Transmitting codeword %d \n",iter);
printf("Channel caused following errors Location (Error): \n");
#endif
no_ch_errs = 0;
for (i=0;i < nn_short;i++){
x = erand48(store);
if (x < prob_symb_err){
error_byte = (int) (lrand48() % 256);
received[i] = cw[i] ^ error_byte;
++no_ch_errs;
#ifndef NO_PRINT
printf("%d (%#x) ",i,error_byte);
#endif
}
else
received[i] = cw[i];
}
#ifndef NO_PRINT
printf("\n");
printf("Channel caused %d errors\n",no_ch_errs);
/* for (i=0;i < nn_short;i++) printf("%02x ",received[i]); printf("\n");*/
#endif
/* Pad with zeros and decode as if in (255,kk) tt-error correcting code */
for (i=0;i < nn-kk;i++) recd[i] = received[i]; /* parity bytes */
for (i=nn-kk;i < nn-kk+kk_short;i++) recd[i] = received[i]; /* info bytes */
for (i=nn-kk+kk_short;i < nn;i++) recd[i] = 0; /* zero padding */
decode_flag = decode_rs();
#ifndef NO_PRINT
printf("decode_rs() returned %d\n",decode_flag);
error_flag = 0;
for (i=0; i < kk_short; i++){
if (recd[i+nn-kk] != cw[i+nn-kk]){
error_flag = 1;
break;
}
}
#endif
if (decode_flag == 2){
if (no_ch_errs <= max_errs){
printf("%d ch errs <= max # correctable errs but \n",no_ch_errs,max_errs);
printf("\n DECODER ERROR: deg(lambda) unequal to #roots \n");
exit(2); /* DECODER ERROR condition */
}
}
else if (decode_flag == 3){
if (no_ch_errs <= max_errs){
printf(" %d ch errs <= max # correctable errs but \n",no_ch_errs,max_errs);
printf("\n deg(lambda) > 2*tt \n");
exit(3);/* DECODER ERROR condition */
}
}
else{
if ((no_ch_errs <= max_errs) && (error_flag == 1)){
printf("DECODER FAILED TO CORRECT %d ERRORS\n",no_ch_errs);
++no_decoder_errors;
#ifndef NO_PRINT
printf("The Transmitted Codeword\n");
for (i=0;i < nn_short;i++) printf("%02x ",cw[i]); printf("\n");
#endif
}
}
} /* closing iteration loop */
if (no_decoder_errors > 0)
printf("The number of decoder errors were %d\n",no_decoder_errors);
else
printf("Decoder corrected all occurrences of %d or less errors\n",tt);
#endif
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -