亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? sfp-machine.h

?? ARM 嵌入式 系統 設計與實例開發 實驗教材 二源碼
?? H
字號:
/* * BK Id: SCCS/s.sfp-machine.h 1.5 05/17/01 18:14:23 cort *//* Machine-dependent software floating-point definitions.  PPC version.   Copyright (C) 1997 Free Software Foundation, Inc.   This file is part of the GNU C Library.   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Library General Public License as   published by the Free Software Foundation; either version 2 of the   License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Library General Public License for more details.   You should have received a copy of the GNU Library General Public   License along with the GNU C Library; see the file COPYING.LIB.  If   not, write to the Free Software Foundation, Inc.,   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.     Actually, this is a PPC (32bit) version, written based on the   i386, sparc, and sparc64 versions, by me,    Peter Maydell (pmaydell@chiark.greenend.org.uk).   Comments are by and large also mine, although they may be inaccurate.   In picking out asm fragments I've gone with the lowest common   denominator, which also happens to be the hardware I have :->   That is, a SPARC without hardware multiply and divide. *//* basic word size definitions */#define _FP_W_TYPE_SIZE		32#define _FP_W_TYPE		unsigned long#define _FP_WS_TYPE		signed long#define _FP_I_TYPE		long#define __ll_B			((UWtype) 1 << (W_TYPE_SIZE / 2))#define __ll_lowpart(t)		((UWtype) (t) & (__ll_B - 1))#define __ll_highpart(t)	((UWtype) (t) >> (W_TYPE_SIZE / 2))/* You can optionally code some things like addition in asm. For * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't * then you get a fragment of C code [if you change an #ifdef 0 * in op-2.h] or a call to add_ssaaaa (see below). * Good places to look for asm fragments to use are gcc and glibc. * gcc's longlong.h is useful. *//* We need to know how to multiply and divide. If the host word size * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which * codes the multiply with whatever gcc does to 'a * b'. * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm  * function that can multiply two 1W values and get a 2W result.  * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which * does bitshifting to avoid overflow. * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or  * _FP_DIV_HELP_ldiv (see op-1.h). * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd * to do this.] * In general, 'n' is the number of words required to hold the type, * and 't' is either S, D or Q for single/double/quad. *           -- PMM *//* Example: SPARC64: * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y) * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) * * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y) * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) * * Example: i386: * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) * * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) */#define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm)#define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm)#define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y)#define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)/* These macros define what NaN looks like. They're supposed to expand to  * a comma-separated set of 32bit unsigned ints that encode NaN. */#define _FP_NANFRAC_S		_FP_QNANBIT_S#define _FP_NANFRAC_D		_FP_QNANBIT_D, 0#define _FP_NANFRAC_Q           _FP_QNANBIT_Q, 0, 0, 0#define _FP_KEEPNANFRACP 1/* This macro appears to be called when both X and Y are NaNs, and  * has to choose one and copy it to R. i386 goes for the larger of the * two, sparc64 just picks Y. I don't understand this at all so I'll * go with sparc64 because it's shorter :->   -- PMM  */#define _FP_CHOOSENAN(fs, wc, R, X, Y)			\  do {							\    R##_s = Y##_s;					\    _FP_FRAC_COPY_##wc(R,Y);				\    R##_c = FP_CLS_NAN;					\  } while (0)  extern void fp_unpack_d(long *, unsigned long *, unsigned long *,			long *, long *, void *);extern int  fp_pack_d(void *, long, unsigned long, unsigned long, long, long);extern int  fp_pack_ds(void *, long, unsigned long, unsigned long, long, long);#define __FP_UNPACK_RAW_1(fs, X, val)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    X##_f = _flo->bits.frac;				\    X##_e = _flo->bits.exp;				\    X##_s = _flo->bits.sign;				\  } while (0)#define __FP_UNPACK_RAW_2(fs, X, val)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    X##_f0 = _flo->bits.frac0;				\    X##_f1 = _flo->bits.frac1;				\    X##_e  = _flo->bits.exp;				\    X##_s  = _flo->bits.sign;				\  } while (0)#define __FP_UNPACK_S(X,val)		\  do {					\    __FP_UNPACK_RAW_1(S,X,val);		\    _FP_UNPACK_CANONICAL(S,1,X);	\  } while (0)#define __FP_UNPACK_D(X,val)		\	fp_unpack_d(&X##_s, &X##_f1, &X##_f0, &X##_e, &X##_c, val)#define __FP_PACK_RAW_1(fs, val, X)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    _flo->bits.frac = X##_f;				\    _flo->bits.exp  = X##_e;				\    _flo->bits.sign = X##_s;				\  } while (0)  #define __FP_PACK_RAW_2(fs, val, X)			\  do {							\    union _FP_UNION_##fs *_flo =			\    	(union _FP_UNION_##fs *)val;			\							\    _flo->bits.frac0 = X##_f0;				\    _flo->bits.frac1 = X##_f1;				\    _flo->bits.exp   = X##_e;				\    _flo->bits.sign  = X##_s;				\  } while (0)#include <linux/kernel.h>#include <linux/sched.h>#define __FPU_FPSCR	(current->thread.fpscr)/* We only actually write to the destination register * if exceptions signalled (if any) will not trap. */#define __FPU_ENABLED_EXC \({						\	(__FPU_FPSCR >> 3) & 0x1f;	\})#define __FPU_TRAP_P(bits) \	((__FPU_ENABLED_EXC & (bits)) != 0)#define __FP_PACK_S(val,X)			\({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\    if(!__exc || !__FPU_TRAP_P(__exc))		\        __FP_PACK_RAW_1(S,val,X);		\    __exc;					\})#define __FP_PACK_D(val,X)			\	fp_pack_d(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)#define __FP_PACK_DS(val,X)			\	fp_pack_ds(val, X##_s, X##_f1, X##_f0, X##_e, X##_c)/* Obtain the current rounding mode. */#define FP_ROUNDMODE			\({					\	__FPU_FPSCR & 0x3;		\})/* the asm fragments go here: all these are taken from glibc-2.0.5's * stdlib/longlong.h */#include <linux/types.h>#include <asm/byteorder.h>/* add_ssaaaa is used in op-2.h and should be equivalent to * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, * high_addend_2, low_addend_2) adds two UWtype integers, composed by * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow * (i.e. carry out) is not stored anywhere, and is lost. */#define add_ssaaaa(sh, sl, ah, al, bh, bl)				\  do {									\    if (__builtin_constant_p (bh) && (bh) == 0)				\      __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2"		\	     : "=r" ((USItype)(sh)),					\	       "=&r" ((USItype)(sl))					\	     : "%r" ((USItype)(ah)),					\	       "%r" ((USItype)(al)),					\	       "rI" ((USItype)(bl)));					\    else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\      __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2"		\	     : "=r" ((USItype)(sh)),					\	       "=&r" ((USItype)(sl))					\	     : "%r" ((USItype)(ah)),					\	       "%r" ((USItype)(al)),					\	       "rI" ((USItype)(bl)));					\    else								\      __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3"		\	     : "=r" ((USItype)(sh)),					\	       "=&r" ((USItype)(sl))					\	     : "%r" ((USItype)(ah)),					\	       "r" ((USItype)(bh)),					\	       "%r" ((USItype)(al)),					\	       "rI" ((USItype)(bl)));					\  } while (0)/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere, * and is lost. */#define sub_ddmmss(sh, sl, ah, al, bh, bl)				\  do {									\    if (__builtin_constant_p (ah) && (ah) == 0)				\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2"	\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(bh)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0)		\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2"	\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(bh)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else if (__builtin_constant_p (bh) && (bh) == 0)			\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2"		\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(ah)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0)		\      __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2"		\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(ah)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\    else								\      __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2"	\	       : "=r" ((USItype)(sh)),					\		 "=&r" ((USItype)(sl))					\	       : "r" ((USItype)(ah)),					\		 "r" ((USItype)(bh)),					\		 "rI" ((USItype)(al)),					\		 "r" ((USItype)(bl)));					\  } while (0)/* asm fragments for mul and div */	 /* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype * word product in HIGH_PROD and LOW_PROD. */#define umul_ppmm(ph, pl, m0, m1)					\  do {									\    USItype __m0 = (m0), __m1 = (m1);					\    __asm__ ("mulhwu %0,%1,%2"						\	     : "=r" ((USItype)(ph))					\	     : "%r" (__m0),						\               "r" (__m1));						\    (pl) = __m0 * __m1;							\  } while (0)/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, * denominator) divides a UDWtype, composed by the UWtype integers * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less * than DENOMINATOR for correct operation.  If, in addition, the most * significant bit of DENOMINATOR must be 1, then the pre-processor symbol * UDIV_NEEDS_NORMALIZATION is defined to 1. */#define udiv_qrnnd(q, r, n1, n0, d)					\  do {									\    UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m;			\    __d1 = __ll_highpart (d);						\    __d0 = __ll_lowpart (d);						\									\    __r1 = (n1) % __d1;							\    __q1 = (n1) / __d1;							\    __m = (UWtype) __q1 * __d0;						\    __r1 = __r1 * __ll_B | __ll_highpart (n0);				\    if (__r1 < __m)							\      {									\	__q1--, __r1 += (d);						\	if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */	\	  if (__r1 < __m)						\	    __q1--, __r1 += (d);					\      }									\    __r1 -= __m;							\									\    __r0 = __r1 % __d1;							\    __q0 = __r1 / __d1;							\    __m = (UWtype) __q0 * __d0;						\    __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\    if (__r0 < __m)							\      {									\	__q0--, __r0 += (d);						\	if (__r0 >= (d))						\	  if (__r0 < __m)						\	    __q0--, __r0 += (d);					\      }									\    __r0 -= __m;							\									\    (q) = (UWtype) __q1 * __ll_B | __q0;				\    (r) = __r0;								\  } while (0)#define UDIV_NEEDS_NORMALIZATION 1#define abort()								\	return 0#ifdef __BIG_ENDIAN#define __BYTE_ORDER __BIG_ENDIAN#else#define __BYTE_ORDER __LITTLE_ENDIAN#endif/* Exception flags. */#define EFLAG_INVALID		(1 << (31 - 2))#define EFLAG_OVERFLOW		(1 << (31 - 3))#define EFLAG_UNDERFLOW		(1 << (31 - 4))#define EFLAG_DIVZERO		(1 << (31 - 5))#define EFLAG_INEXACT		(1 << (31 - 6))#define EFLAG_VXSNAN		(1 << (31 - 7))#define EFLAG_VXISI		(1 << (31 - 8))#define EFLAG_VXIDI		(1 << (31 - 9))#define EFLAG_VXZDZ		(1 << (31 - 10))#define EFLAG_VXIMZ		(1 << (31 - 11))#define EFLAG_VXVC		(1 << (31 - 12))#define EFLAG_VXSOFT		(1 << (31 - 21))#define EFLAG_VXSQRT		(1 << (31 - 22))#define EFLAG_VXCVI		(1 << (31 - 23))

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久久影院官网| 日韩视频中午一区| 国产酒店精品激情| 久久不见久久见中文字幕免费| 亚洲成人精品在线观看| 一区二区三区加勒比av| 亚洲精品日产精品乱码不卡| 亚洲三级在线免费| 亚洲一二三区不卡| 日韩精品欧美精品| 激情欧美日韩一区二区| 久久精品99久久久| 国产iv一区二区三区| 不卡欧美aaaaa| 日本韩国视频一区二区| 欧美吻胸吃奶大尺度电影| 在线免费观看日本欧美| 欧美精品久久久久久久多人混战 | 激情综合色播五月| 免费在线观看视频一区| 精品亚洲国内自在自线福利| 国产成人午夜高潮毛片| 91小视频免费观看| 欧美三级视频在线播放| 欧美一区二区三区不卡| 久久久国产精品麻豆| 中文字幕视频一区二区三区久| 一区二区三区四区五区视频在线观看| 亚洲成人一区二区在线观看| 精品一区二区综合| 99久久精品一区二区| 4438成人网| 国产精品热久久久久夜色精品三区| 日韩美女精品在线| 蜜桃av一区二区三区| 粉嫩一区二区三区在线看| 欧美伊人久久久久久久久影院| 亚洲精品在线三区| 一卡二卡欧美日韩| 国产精品亚洲а∨天堂免在线| 91精彩视频在线| 久久综合视频网| 一区二区高清视频在线观看| 韩国成人在线视频| 欧美精品日韩一区| 国产精品色哟哟网站| 水野朝阳av一区二区三区| 成人av动漫在线| 精品欧美一区二区在线观看| 亚洲精品中文在线| 成人午夜免费视频| 日韩视频国产视频| 亚洲电影一级片| 成人午夜视频在线观看| 欧美videos中文字幕| 亚洲一区在线电影| 成人av电影在线网| 国产亚洲精品免费| 日韩成人伦理电影在线观看| 91麻豆国产香蕉久久精品| 久久久精品综合| 美腿丝袜在线亚洲一区| 欧美老肥妇做.爰bbww| 一区二区三区成人在线视频| www.亚洲激情.com| 国产日韩欧美一区二区三区乱码 | 精品美女在线观看| 亚洲高清中文字幕| 欧洲精品视频在线观看| 亚洲免费观看高清完整版在线观看| 国产精品资源在线观看| 精品国产免费视频| 蜜桃av一区二区三区| 日韩视频在线一区二区| 免费成人美女在线观看| 777奇米四色成人影色区| 亚洲国产裸拍裸体视频在线观看乱了 | 国产精品天干天干在观线| 国产成人综合精品三级| 久久蜜桃一区二区| 国产河南妇女毛片精品久久久| 久久久久久久久岛国免费| 九一九一国产精品| 精品国产91久久久久久久妲己| 久久精品国产99国产精品| 欧美大片日本大片免费观看| 精品一二线国产| 337p日本欧洲亚洲大胆色噜噜| 麻豆精品久久精品色综合| 2021中文字幕一区亚洲| 国产精品 日产精品 欧美精品| 国产精品网站一区| 97久久久精品综合88久久| 亚洲综合丁香婷婷六月香| 欧洲av一区二区嗯嗯嗯啊| 丝瓜av网站精品一区二区| 26uuu久久天堂性欧美| 成人激情开心网| 一区二区三区丝袜| 欧美人牲a欧美精品| 麻豆91精品91久久久的内涵| 亚洲国产精品激情在线观看| 91视视频在线观看入口直接观看www| 亚洲一区二区免费视频| 精品人在线二区三区| 99天天综合性| 人人爽香蕉精品| 国产精品少妇自拍| 欧美精品一级二级三级| 国产美女精品在线| 亚洲精品一卡二卡| 久久综合中文字幕| 欧美日韩一区二区三区高清| 精品一区二区三区的国产在线播放| 一区免费观看视频| 日韩三级免费观看| 91影院在线观看| 国产一区二区三区四| 一区二区视频在线| 久久美女高清视频| 欧美视频三区在线播放| 国产美女娇喘av呻吟久久| 亚洲成a人v欧美综合天堂下载| 久久精品视频免费观看| 欧美日韩1区2区| av成人动漫在线观看| 久久成人麻豆午夜电影| 亚洲福利视频一区二区| 中文字幕一区二区三区在线播放 | 亚洲天堂免费在线观看视频| 日韩西西人体444www| 91麻豆成人久久精品二区三区| 美女mm1313爽爽久久久蜜臀| 一区二区在线免费观看| 国产精品久久久久久亚洲毛片| 欧美一区二区三区性视频| 欧美色精品在线视频| aaa欧美色吧激情视频| 国产又黄又大久久| 久久精品国产亚洲一区二区三区| 亚洲午夜av在线| 亚洲黄色小视频| 一区视频在线播放| 国产精品欧美极品| 国产日韩精品久久久| 精品91自产拍在线观看一区| 日韩欧美二区三区| 欧美一区二区网站| 欧美精选一区二区| 欧美高清www午色夜在线视频| 欧美三级午夜理伦三级中视频| 91麻豆swag| 在线观看欧美日本| 91久久国产最好的精华液| 91国产丝袜在线播放| 91精彩视频在线| 欧洲人成人精品| 欧美日韩在线三级| 欧美伦理视频网站| 欧美日韩dvd在线观看| 91精品国产欧美一区二区18| 欧美一区永久视频免费观看| 3d成人动漫网站| 精品久久人人做人人爽| 久久久久9999亚洲精品| 国产精品无圣光一区二区| 亚洲少妇最新在线视频| 一区二区三区产品免费精品久久75| 一区二区三区在线免费| 午夜亚洲国产au精品一区二区| 三级一区在线视频先锋| 九九国产精品视频| 成人午夜视频在线| 在线观看日韩国产| 欧美成人三级在线| 国产精品成人午夜| 亚洲午夜三级在线| 精品一区二区日韩| 99久久精品免费看国产| 欧美三级一区二区| 久久久久久久精| 一区二区三区四区在线免费观看| 午夜精品成人在线| 国产乱码一区二区三区| 色香色香欲天天天影视综合网 | 九一九一国产精品| 99精品热视频| 337p亚洲精品色噜噜狠狠| 久久久99精品久久| 亚洲国产欧美在线| 国产福利精品一区| 7777精品伊人久久久大香线蕉 | 色94色欧美sute亚洲线路一ni| 在线电影国产精品| 中文字幕精品一区二区三区精品| 午夜电影网一区| av激情成人网| 久久久无码精品亚洲日韩按摩| 亚洲一二三四久久| 成人黄色软件下载|