?? addrspace.cc
字號:
// addrspace.cc // Routines to manage address spaces (executing user programs).//// In order to run a user program, you must://// 1. link with the -N -T 0 option // 2. run coff2noff to convert the object file to Nachos format// (Nachos object code format is essentially just a simpler// version of the UNIX executable object code format)// 3. load the NOFF file into the Nachos file system// (if you haven't implemented the file system yet, you// don't need to do this last step)//// Copyright (c) 1992-1993 The Regents of the University of California.// All rights reserved. See copyright.h for copyright notice and limitation // of liability and disclaimer of warranty provisions.#include "copyright.h"#include "system.h"#include "addrspace.h"#include "noff.h"#ifdef HOST_SPARC#include <strings.h>#endifint fileoffset;//----------------------------------------------------------------------// SwapHeader// Do little endian to big endian conversion on the bytes in the // object file header, in case the file was generated on a little// endian machine, and we're now running on a big endian machine.//----------------------------------------------------------------------static void SwapHeader (NoffHeader *noffH){ noffH->noffMagic = WordToHost(noffH->noffMagic); noffH->code.size = WordToHost(noffH->code.size); noffH->code.virtualAddr = WordToHost(noffH->code.virtualAddr); noffH->code.inFileAddr = WordToHost(noffH->code.inFileAddr); noffH->initData.size = WordToHost(noffH->initData.size); noffH->initData.virtualAddr = WordToHost(noffH->initData.virtualAddr); noffH->initData.inFileAddr = WordToHost(noffH->initData.inFileAddr); noffH->uninitData.size = WordToHost(noffH->uninitData.size); noffH->uninitData.virtualAddr = WordToHost(noffH->uninitData.virtualAddr); noffH->uninitData.inFileAddr = WordToHost(noffH->uninitData.inFileAddr);}//----------------------------------------------------------------------// AddrSpace::AddrSpace// Create an address space to run a user program.// Load the program from a file "executable", and set everything// up so that we can start executing user instructions.//// Assumes that the object code file is in NOFF format.//// First, set up the translation from program memory to physical // memory. For now, this is really simple (1:1), since we are// only uniprogramming, and we have a single unsegmented page table//// "executable" is the file containing the object code to load into memory//----------------------------------------------------------------------AddrSpace::AddrSpace(){ mm = new MemoryManager(); spaceid = 0;}voidAddrSpace::AssignMem(OpenFile *executable){ NoffHeader noffH; unsigned int size; int count1,count2,restSize1,restSize2; executable->ReadAt((char *)&noffH, sizeof(noffH), 0); if ((noffH.noffMagic != NOFFMAGIC) && (WordToHost(noffH.noffMagic) == NOFFMAGIC)) SwapHeader(&noffH); ASSERT(noffH.noffMagic == NOFFMAGIC);// how big is address space? size = noffH.code.size + noffH.initData.size + noffH.uninitData.size + UserStackSize; // we need to increase the size // to leave room for the stack numPages = divRoundUp(size, PageSize); size = numPages * PageSize; ASSERT(numPages <= NumPhysPages); // check we're not trying // to run anything too big -- // at least until we have // virtual memory DEBUG('a', "Initializing address space, num pages %d, size %d\n", numPages, size);// first, set up the translation pageTable = new TranslationEntry[numPages]; if((mm->Assign(numPages,pageTable))==false){ printf("Memory Limit\n"); interrupt->Halt(); return; }// then, copy in the code and data segments into memory if (noffH.code.size > 0) { DEBUG('a', "Initializing code segment, at 0x%x, size %d\n", noffH.code.virtualAddr, noffH.code.size); count1=divRoundUp(noffH.code.size,PageSize); restSize1 = noffH.code.size%PageSize; for(int i=0;i<count1;i++){ if((i == count1-1) && restSize1!=0) { executable->ReadAt(&(machine->mainMemory[(pageTable[i].physicalPage)*PageSize]),restSize1,noffH.code.inFileAddr+i*PageSize); } else executable->ReadAt(&(machine->mainMemory[(pageTable[i].physicalPage)*PageSize]),PageSize,noffH.code.inFileAddr+i*PageSize); } //printf("count1=%d PageSize=%d noffH.code.size=%d noffH.code.virtualAddr=%d\n",count1,PageSize,noffH.code.size,noffH.code.virtualAddr);// executable->ReadAt(&(machine->mainMemory[noffH.code.virtualAddr]),noffH.code.size, noffH.code.inFileAddr); } if (noffH.initData.size > 0) { DEBUG('a', "Initializing data segment, at 0x%x, size %d\n", noffH.initData.virtualAddr, noffH.initData.size); int restSize=0; if(restSize1!=0){ restSize = PageSize-restSize1; fileoffset=pageTable[count1-1].physicalPage*PageSize+restSize1; executable->ReadAt(&(machine->mainMemory[pageTable[count1-1].physicalPage*PageSize+restSize1]),restSize,noffH.initData.inFileAddr); } else fileoffset=count1*PageSize; count2=divRoundUp(noffH.initData.size-restSize,PageSize); restSize2 = (noffH.initData.size-restSize) % PageSize; for(int i=0;i<count2;i++){ if((i == count2-1) && restSize2!=0) executable->ReadAt(&(machine->mainMemory[pageTable[i].physicalPage*PageSize]),restSize2,noffH.initData.inFileAddr+i*PageSize+restSize); else executable->ReadAt(&(machine->mainMemory[pageTable[i].physicalPage*PageSize]),PageSize,noffH.initData.inFileAddr+i*PageSize+restSize); } //printf("count2=%d PageSize=%d noffH.initData.size=%d noffH.initData.virtualAddr=%d \n",count2,PageSize,noffH.initData.size,noffH.initData.virtualAddr);// executable->ReadAt(&(machine->mainMemory[noffH.initData.virtualAddr]),noffH.initData.size, noffH.initData.inFileAddr); }}voidAddrSpace::Reclaim() { mm->Release(numPages,pageTable);}void AddrSpace::setSpaceid(int id) { spaceid = id;}int AddrSpace::getSpaceid() { return spaceid;} //----------------------------------------------------------------------// AddrSpace::~AddrSpace// Dealloate an address space. Nothing for now!//----------------------------------------------------------------------AddrSpace::~AddrSpace(){ delete mm;}//----------------------------------------------------------------------// AddrSpace::InitRegisters// Set the initial values for the user-level register set.//// We write these directly into the "machine" registers, so// that we can immediately jump to user code. Note that these// will be saved/restored into the currentThread->userRegisters// when this thread is context switched out.//----------------------------------------------------------------------voidAddrSpace::InitRegisters(){ int i; for (i = 0; i < NumTotalRegs; i++) machine->WriteRegister(i, 0); // Initial program counter -- must be location of "Start" machine->WriteRegister(PCReg, 0); // Need to also tell MIPS where next instruction is, because // of branch delay possibility machine->WriteRegister(NextPCReg, 4); // Set the stack register to the end of the address space, where we // allocated the stack; but subtract off a bit, to make sure we don't // accidentally reference off the end! machine->WriteRegister(StackReg, numPages * PageSize - 16); DEBUG('a', "Initializing stack register to %d\n", numPages * PageSize - 16);}//----------------------------------------------------------------------// AddrSpace::SaveState// On a context switch, save any machine state, specific// to this address space, that needs saving.//// For now, nothing!//----------------------------------------------------------------------void AddrSpace::SaveState() {}//----------------------------------------------------------------------// AddrSpace::RestoreState// On a context switch, restore the machine state so that// this address space can run.//// For now, tell the machine where to find the page table.//----------------------------------------------------------------------void AddrSpace::RestoreState() { machine->pageTable = pageTable; machine->pageTableSize = numPages;}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -