亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? 一種應用廣泛的分類算法
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed,  8 Feb 2006 08:31:04 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(54)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(30)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
<li><a
href="#/Q8:_MATLAB_Interface">Q8:_MATLAB_Interface</a>(1)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Is there a way to speed up the pow() function used in calculating polynomial kernels?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the dll file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产乱码精品一区二区三区忘忧草 | 国产欧美日本一区视频| 欧美性xxxxxxxx| 欧美性大战久久久久久久蜜臀| 91网站在线观看视频| 97精品国产97久久久久久久久久久久| 国产成人精品三级麻豆| 不卡一区二区在线| 91麻豆文化传媒在线观看| 欧美视频在线不卡| 日韩天堂在线观看| 国产欧美一区二区精品婷婷| 国产午夜亚洲精品不卡| 成人欧美一区二区三区小说 | 99re6这里只有精品视频在线观看| 成人h动漫精品一区二区| 91影院在线观看| 欧美又粗又大又爽| 91精品国产色综合久久| 久久综合色8888| 综合激情网...| 亚州成人在线电影| 国产一区二区三区久久久| www.综合网.com| 欧美日韩成人在线| 中文一区在线播放| 一区二区三区久久久| 日本不卡一二三| 成人一区二区三区中文字幕| 色综合久久综合中文综合网| 91麻豆精品国产| 国产午夜精品一区二区| 亚洲观看高清完整版在线观看 | 国产欧美日韩视频在线观看| 一区二区三区在线免费| 国产一区高清在线| 欧美日韩高清一区二区三区| 久久五月婷婷丁香社区| 亚洲成av人**亚洲成av**| 国产成人精品一区二区三区四区 | 日本大胆欧美人术艺术动态| 国产成人av自拍| 日韩欧美一区中文| 亚洲老司机在线| 国产乱码精品一区二区三区五月婷| 99久久国产免费看| 久久青草国产手机看片福利盒子| 亚洲精品乱码久久久久久久久| 激情综合网av| 制服丝袜亚洲精品中文字幕| 国产精品不卡在线观看| 久国产精品韩国三级视频| 欧美伊人精品成人久久综合97 | 三级精品在线观看| 91色.com| 中文字幕亚洲一区二区va在线| 麻豆久久久久久| 欧美日韩亚洲高清一区二区| 中文字幕中文字幕在线一区| 国产精品 欧美精品| 欧美videossexotv100| 天天影视涩香欲综合网| 欧美主播一区二区三区美女| 亚洲欧洲日韩一区二区三区| 国产精品亚洲一区二区三区妖精 | 国产精品第13页| 成人免费高清视频在线观看| 精品va天堂亚洲国产| 精品一区二区三区免费毛片爱 | **网站欧美大片在线观看| 国产91综合一区在线观看| 精品欧美一区二区在线观看| 看电视剧不卡顿的网站| 日韩欧美一二三区| 蜜臂av日日欢夜夜爽一区| 欧美一区二区视频在线观看2020 | 中文字幕在线观看不卡视频| 国产福利不卡视频| 日韩三级精品电影久久久| 蜜臀av在线播放一区二区三区| 欧美情侣在线播放| 蜜桃av噜噜一区二区三区小说| 日韩精品一区二区在线| 国产精品综合一区二区| 中文在线免费一区三区高中清不卡| 国产真实乱子伦精品视频| 精品欧美一区二区在线观看| 国产乱妇无码大片在线观看| 欧美国产精品一区| 91麻豆成人久久精品二区三区| 亚洲影视在线播放| 欧美一卡二卡在线| 国产精品一区二区黑丝| 国产精品国产三级国产有无不卡| 91福利视频网站| 日韩黄色小视频| 国产欧美一二三区| 91黄视频在线| 裸体健美xxxx欧美裸体表演| 国产日产欧美一区二区视频| 一本高清dvd不卡在线观看| 亚洲一卡二卡三卡四卡 | 色婷婷av一区二区三区软件| 亚洲国产日韩一级| www久久久久| 欧美色图在线观看| 国产激情一区二区三区| 亚洲第一二三四区| 欧美激情在线看| 欧美色精品天天在线观看视频| 久草这里只有精品视频| 国产精品久久久久久久久免费相片| 精品视频色一区| 成人a区在线观看| 蜜桃av噜噜一区| 亚洲午夜视频在线观看| 久久久午夜精品| 欧美老人xxxx18| 成人av资源在线| 狠狠色狠狠色综合| 午夜视频在线观看一区| 欧美国产日本韩| 欧美一区二区视频在线观看2020 | 亚洲成人第一页| 国产精品久久久久久久久动漫| 91精品国产综合久久久久久| bt7086福利一区国产| 久久91精品久久久久久秒播| 亚洲自拍偷拍图区| 中日韩免费视频中文字幕| 日韩欧美中文一区| 欧美日韩亚洲综合在线 | 久久精品免视看| 日韩一区二区在线观看视频| 欧美一a一片一级一片| 99国产精品国产精品毛片| 狠狠色丁香婷综合久久| 久久国产精品无码网站| 石原莉奈在线亚洲三区| 午夜久久久久久久久久一区二区| 亚洲视频在线观看一区| 国产精品网站一区| 久久亚洲综合av| 精品久久久久久综合日本欧美| 69av一区二区三区| 欧美高清视频一二三区 | 亚洲国产精品久久人人爱| 中文字幕一区二区三区av| 欧美激情一区在线观看| 欧美国产激情二区三区| 久久久国产综合精品女国产盗摄| 欧美大片在线观看一区二区| 777奇米成人网| 日韩三级视频在线看| 日韩欧美在线影院| 日韩区在线观看| 久久综合网色—综合色88| 日韩欧美国产综合一区| 精品日产卡一卡二卡麻豆| 久久―日本道色综合久久| 久久精品无码一区二区三区| 欧美国产一区二区在线观看| 国产精品丝袜91| 亚洲美女视频一区| 午夜伊人狠狠久久| 久久成人免费电影| 高清av一区二区| 91福利资源站| 日韩欧美精品三级| 国产精品入口麻豆原神| 玉足女爽爽91| 麻豆极品一区二区三区| 国产精品一区二区男女羞羞无遮挡 | 国产精品18久久久久久久久| 懂色一区二区三区免费观看| 成人av在线网| 欧美老女人第四色| 国产欧美日韩视频在线观看| 亚洲黄色小说网站| 久久成人18免费观看| av电影在线观看一区| 欧美三级电影一区| 久久久精品一品道一区| 一区二区高清在线| 国产毛片精品视频| 在线观看亚洲精品| 久久精品免视看| 亚洲3atv精品一区二区三区| 国产乱码精品一区二区三| 在线精品视频免费播放| 久久综合久久综合久久| 亚洲国产精品久久艾草纯爱| 国产精品99久| 欧美视频精品在线| 国产精品久久久久一区| 久久草av在线| 欧美中文字幕一二三区视频| 欧美精品一区二区三| 午夜视频一区在线观看| 91免费看片在线观看|