亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? 應用程序
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed, 29 Oct 2008 23:37:19 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(70)</li>
<ul><b>
<li><a
href="#/Q1:_Some_sample_uses_of_libsvm">Q1:_Some_sample_uses_of_libsvm</a>(2)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(9)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(6)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(33)</li>
<li><a
href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
<li><a
href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
<li><a
href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q8:_Python_interface">Q8:_Python_interface</a>(5)</li>
<li><a
href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(5)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#faq102">Some applications which have used libsvm </a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f209">What is the difference between "." and "*" outputed during training? </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
<li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
<li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f4141">Does shrinking always help?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f4201">Why my cross-validation results are different from those in the Practical Guide?</a></li>
<li class="headlines_item"><a href="#f421">But on some systems CV accuracy is the same in several runs. How could I use different data partitions?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
<li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
<li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
<li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes a longer time?</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the pyd file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the .pyd file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f706">I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
<li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
<li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
<li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_sample_uses_of_libsvm"></a>
<a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
<a name="faq102"><b>Q: Some applications which have used libsvm </b></a>
<br/>                                                                                
<ul>
<li><a href=http://johel.m.free.fr/demo_045.htm>
Realtime object recognition</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f209"><b>Q: What is the difference between "." and "*" outputed during training? </b></a>
<br/>                                                                                

<p>
"." means every 1,000 iterations (or every #data 
iterations is your #data is less than 1,000).
"*" means that after iterations of using
a smaller shrunk problem, 
we reset to use the whole set. See the 
<a href=../papers/libsvm.pdf>implementation document</a> for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
<br/>                                                                                

<p>
We assume that you have '\n' in the end of
each line. So please press enter in the end
of your last line.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
<br/>                                                                                

<p>
The svm-train program in libsvm conducts only a simple check of the input data. To do a
detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f306"><b>Q: May I put comments in data files?</b></a>
<br/>                                                                                

<p>
No, for simplicity we don't support that.
However, you can easily preprocess your data before
using libsvm. For example,
if you have the following data
<pre>
test.txt
1 1:2 2:1 # proten A
</pre>
then on unix machines you can do
<pre>
cut -d '#' -f 1 < test.txt > test.features
cut -d '#' -f 2 < test.txt > test.comments
svm-predict test.feature train.model test.predicts
paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
</pre>
<p align="right">

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久99精品国产.久久久久| 亚洲最新视频在线观看| 欧美三片在线视频观看| 日韩欧美色综合网站| 中文字幕欧美一区| 最新国产成人在线观看| 久久精品国产99久久6| 色一情一乱一乱一91av| 中文字幕乱码久久午夜不卡| 精品国产一区a| 亚洲一区视频在线| 午夜视频久久久久久| proumb性欧美在线观看| 日韩一区二区电影网| 亚洲福利视频一区二区| 色综合中文字幕国产 | 精品国产成人在线影院| 亚洲综合视频在线观看| www..com久久爱| 欧美综合一区二区| 在线观看91精品国产麻豆| 欧美一区三区二区| 午夜一区二区三区视频| 在线视频观看一区| 欧美一卡二卡三卡四卡| 久久青草欧美一区二区三区| 另类调教123区| 成人美女视频在线观看18| 91视频观看视频| 成人av网址在线| 久久这里都是精品| 丝瓜av网站精品一区二区| 亚洲国产婷婷综合在线精品| 94-欧美-setu| 亚洲欧美日韩一区二区| 成人av在线播放网站| 国产精品乱人伦| 不卡视频免费播放| 亚洲男人天堂av| 欧美日韩国产一二三| 亚洲.国产.中文慕字在线| 91黄色小视频| 日韩二区在线观看| 欧美成va人片在线观看| 国产麻豆精品在线观看| 国产精品久久三| 欧美在线你懂得| 日韩激情在线观看| 精品国产乱码久久久久久牛牛 | 国产.欧美.日韩| **欧美大码日韩| 欧美无乱码久久久免费午夜一区 | 亚洲图片欧美激情| 色狠狠一区二区三区香蕉| 亚洲午夜免费电影| 91精品国产免费久久综合| 久久se精品一区精品二区| 日本一区二区三区国色天香 | 国内精品视频666| 国产日韩亚洲欧美综合| 色综合久久66| 免费成人av在线| 中文一区在线播放| 在线一区二区观看| 精品在线你懂的| 亚洲欧美一区二区三区国产精品| 欧美蜜桃一区二区三区| 国产成人综合自拍| 亚洲一区二区美女| 久久免费视频色| 欧美日韩综合不卡| 国产一区二区美女诱惑| 亚洲一区二区三区四区中文字幕| 日韩欧美国产一二三区| 91香蕉视频污| 精品系列免费在线观看| 亚洲另类中文字| 久久综合九色综合欧美亚洲| 色妹子一区二区| 国产一区二区三区免费在线观看| 又紧又大又爽精品一区二区| 日韩一区二区在线观看视频| 91猫先生在线| 国产高清精品网站| 天天影视涩香欲综合网| 亚洲丝袜美腿综合| 日韩免费高清电影| 欧美自拍丝袜亚洲| av午夜精品一区二区三区| 免费欧美在线视频| 夜夜嗨av一区二区三区网页| 国产亚洲精品aa| 日韩欧美二区三区| 欧美日韩国产大片| 色综合色综合色综合 | 国产精品久久久久久户外露出| 欧美人牲a欧美精品| 色综合久久久久| 高清在线不卡av| 日韩无一区二区| 成人看片黄a免费看在线| 老司机免费视频一区二区三区| 亚洲色图欧美激情| 国产精品人成在线观看免费| 欧美mv日韩mv| 日韩欧美在线综合网| 欧美高清性hdvideosex| 欧美丝袜丝交足nylons| 在线观看网站黄不卡| 99久久精品免费精品国产| 春色校园综合激情亚洲| 国产精品一级黄| 精品一区二区三区的国产在线播放| 日韩专区一卡二卡| 视频一区中文字幕国产| 视频一区在线播放| 五月激情综合网| 图片区小说区区亚洲影院| 午夜亚洲福利老司机| 婷婷久久综合九色综合伊人色| 亚洲一区二区视频在线| 亚洲国产精品久久久久秋霞影院| 亚洲欧美一区二区三区久本道91| 国产欧美精品一区二区色综合| 久久久久久综合| 亚洲欧洲日韩av| 一区二区三区在线免费播放| 亚洲一区成人在线| 亚洲激情五月婷婷| 亚洲va国产va欧美va观看| 婷婷丁香久久五月婷婷| 久久精品国产亚洲高清剧情介绍 | 久久久三级国产网站| 国产欧美日韩另类一区| 亚洲欧美综合网| 亚洲伊人伊色伊影伊综合网| 天天影视涩香欲综合网| 国产中文字幕一区| 99精品国产热久久91蜜凸| 在线一区二区视频| 欧美一区二区黄色| 国产无遮挡一区二区三区毛片日本| 欧美国产禁国产网站cc| 亚洲免费av观看| 青草av.久久免费一区| 国产美女av一区二区三区| 99精品欧美一区二区三区小说| 日本高清无吗v一区| 日韩一区二区三区视频在线观看| 精品久久久三级丝袜| 国产精品久99| 青青草97国产精品免费观看无弹窗版 | 日本一区二区综合亚洲| 亚洲一级在线观看| 国产成人在线视频网址| 精品视频在线免费观看| 久久综合五月天婷婷伊人| 亚洲欧洲制服丝袜| 国产乱码精品一区二区三| 色欧美片视频在线观看| 久久久久久影视| 午夜av一区二区三区| 大尺度一区二区| 日韩视频国产视频| 亚洲欧美偷拍卡通变态| 激情综合五月婷婷| 欧美三级电影精品| 国产精品视频一二三区| 人人精品人人爱| 色久综合一二码| 国产精品美女久久久久久久| 日本特黄久久久高潮| 色综合色综合色综合 | 国产不卡一区视频| 日韩一区二区三区视频在线观看| 亚洲欧美一区二区三区孕妇| 国产一区二区三区久久久| 9191久久久久久久久久久| 中文字幕在线播放不卡一区| 精品在线观看视频| 在线不卡一区二区| 亚洲美女屁股眼交| 丁香激情综合五月| 亚洲精品一区二区在线观看| 亚洲高清免费观看高清完整版在线观看| 成人激情免费视频| 久久久一区二区| 国产一区二区三区高清播放| 欧美一级在线观看| 日本在线播放一区二区三区| 欧洲一区二区av| 亚洲欧美日韩一区| 91麻豆国产在线观看| 日本一区二区三区久久久久久久久不 | 日韩不卡一区二区| 欧美日韩视频专区在线播放| 一区二区成人在线| 91国偷自产一区二区三区成为亚洲经典| 中文字幕在线不卡| 色婷婷av一区二区三区软件|