亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? ripper.1

?? Ripper 分類(lèi)算法
?? 1
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
.EN.TH RIPPER 1.SH NAME.PPripper \- learns a rule set from examples.SH SYNOPSIS.PP.B ripper[ options ] filestem.SH DESCRIPTION.PP.I Ripperis a program for inducing classification rules from a set ofpreclassified examples; as such it is broadly similar to learningmethods such as neural nets, nearest neighbor, and decision treeinduction systems such as CART, C4.5 and ID3. The user provides a setof examples, each of which has been labeled with the appropriate.I class.  Ripper will then look at the examples and find a set of rules thatwill predict the class of later examples.  .PPRipper has several advantages over other learning techniques.  First,ripper's hypothesis is expressed as a set of if-then rules.  Theserules are relatively easy for people to understand; if the ultimategoal is to gain insight into the data, then ripper is probably abetter choice than a neural network learning method, oreven a decision tree induction system like CART.  Second, ripper is asymptotically faster than other competitive rule learningalgorithms; this means that it will be much faster on largedatasets.  Third, ripper allows the user tospecify constraints on the format of the learned if-then rules. Ifthere is some prior knowledge about the concept to be learned, thenthese constraints can often lead to more accurate hypotheses.Fourth, ripper allows attributes to be either nominal,continuous, or "set-valued".  The value of a set-valued attributeis a set of atoms: for example, a set-valued attributecould be used to encode the set of words that appeared inthe body of a document.  Recent versions of Ripper also supportbag-valued attributes.  .SH OPTIONS TO RIPPER.PPThe sole argument to ripper is a .I filestem that determines the name of ripper's input files. (The input filesfor ripper are described below.) The options to ripper have thefollowing meanings..PP.TP 10.BI \-c\^Expect noise-free data..TP.BI \-n\^Expect noisy data (the default.).TP.BI \-k num\^Estimate error rates with k-fold cross-validation.  The trainingis split into k disjoint partitions, and the learning algorithm istrained on every collection of k-1, and then tested in the remainingpartition..TP.BI \-l\^Estimate error rate with leave-one-out cross-validation (ie,N-fold cross-validation where N is size of training set.).TP.BI \-v lev\^Set the trace level ("verbosity") to.I lev,which must be either 0, 1, 2, or 3.  The default is 0..TP.BI \-a  ordering\^Before learning, ripper first heuristically orders the classes;by one of the following methods: +freq, order by increasiningfrequency (the default); -freq, order by decreasing frequency;given, order classes as in the names file; mdl, use heuristicsto guess an optimal ordering; unordered (see below)..PPAfter arranging the  classes ripper finds rules toseparate class1 from classes class2, ... classn, then rules toseparate class2 from classes class3, ... classn, and so on.  The finalclass classn will become the default class. The end result is thatrules for a single class will always be grouped together, but rulesfor classi are possibly simplified, because they can assume that theclass of the example is one of classi, ... classn.  If an exampleis covered by rules from two or more classes, then this conflict isresolved in favor of the class that comesfirst in the ordering..PPWith the '-aunordered' option, ripper will separateeach class from the remaining classes, thus ending up with rules for every class.  Conflicts are resolved by deciding infavor of the rule with lowest training-set error..TP.BI \-s \^Read the training data from standard input, rather than from filestem.data..TP.BI \-g filename\^Use grammar file filename.gram..TP.BI \-f filename\^Use names file filename.names..TP.BI \-O n\^Control optimization of rules.  Rippermakes n optimization passes over the rules it learns.  The default is n=2..TP.BI \-M n\^Use statistics collected on a class-stratified subsample of .I nexamples (instead of the entire dataset) to make certainfrequently repeated decisions.  For very large datasets,RIPPER using subsamples of a few hundred or a few thousand willtypically produce a slightly inferior ruleset; however, it will run muchmore quickly than RIPPER without subsampling..TP.BI \-I n\^Discretize continuous attributes into .I nequal-frequency segments. (If.I numis zero, discretize into the maximal possible number ofsegments.) Default is to not discretize continuous values.Discretization usually speeds up ripper on large datasetswith many continuous values, but may cost in accuracy..TP.BI \-G\^Print the grammar and exit. This is sometimes useful whenone would like to make a change to the default grammar..TP.BI \-N\^Print a names file and exit. This is sometimes useful whenone would like to generate a names file for use by C4.5.(Ripper can usually infer the types of an attribute froma dataset, so a names file for Ripper is optional.).TP.BI \-R\^Randomize operation. (By default, a fixed random seed is used.).TP.BI \-! stringAllow or disallow negative tests in rules.  If the string contains a"s", then negative tests of the form "attribute !~ value" forset- and bag- valued attributes will be allowed in rules.  (The symbol "!~"stands for "does not contain".) If the stringcontains an "n", then negative tests of the form "attribute != value"for nominal attributes will be allowed in rules.  .TP.BI \-D\^ nChange the maximum "decompression"..TP.BI \-S\^ nSimplify the hypothesis more (n>1) or less (n<1)..TP.BI \-L\^ nChange the "loss" ratio, ie the ratio of the cost of a false negativeto the cost of a false positive.  A value of n>1 will usuallyimprove recall of the minority classes, and a value of n<1will usually improve precision..TP.BI \-A\^Add redundant tests to rules.  This sometimes improves precisionand readability, principly for set- or bag-valued attributes that containsets of English words..TP.BI \-F\^ nForce each rule to cover at least.I nexamples..SH INPUT FILESThe files read and written by ripper are of the form.I filestem.extwhere.I filestemis the first and only argument to ripper.  All of ripper inputfiles are free format (i.e. white space is not important.) Anythingfollowing a percent sign character but on the same line is a comment..PPRipper expects to find four files: a.B data filecalled .I filestem.datacontaining some preclassified examples, a .B test filecalled.I filestem.testthat contains some additional preclassified examples to be used astest cases, a  .B names filecalled.I filestem.namesdefining the names of the classes and attributes used in the data file,and a .B grammar file called.I filestem.gramdefining the rules that are allowed to be used in a hypothesis.Except for the grammar file,the format for these files is roughly thesame as used by C4.5. The format  will be described in more detail below.  Thelast three files are optional. If there is no test file ripper willeither not test its learned rule set, or (if directed by the user todo so through the \fB-k\fR or \fB-y\fR options) ripper will usecross-validation to test its learned rule set.  If there is no namesfile, ripper will assign arbitrary names to the attributes andclasses, and will try to figure out the types of the attributes fromthe data.  If there is no grammar file, ripper will use the defaultgrammar described below..PP Ripper also creates a file .I filestem.hypcontaining the ruleset or rulesets it found, in a format that is intended to be computer-readable..PPAn example for ripper is described by a fixed set of.I attributes.  These attributes can be either continuous, nominal, set-valued,or bag-valued.  Continuous attributes have real-number values.  The value of a nominal attribute is one of a fixed set of symbolic values, for example "on, off" or "low, medium, high".  The value of a set- or bag-valued attribute is a set of atoms (ratherthan a single symbolic value.) These attributes, as well as the classes thatare to be predicted, are defined in the.I names file..PPThe names file contains first, a comma-separated list of atomsrepresenting the classes, terminated by a period. (An.I atomcontains only letters, digits, and the underscore character, and mustbegin with a letter.  Alternatively, an atom is any sequence ofcharacters enclosed in single quotes.)  The list of classes is followed by a list of.I attribute definitions.Each attribute definition consistsofthe name of the attribute, e.g. "height" or "sex";a colon;and either the atom .I continuous if the attribute is continuous, the atom .I setif the attribute is set-valued,the atom .I bagif the attribute is bag-valued,the atom.I symbolicif the attribute can take on any symbolic value,or a comma-separated list of atomsrepresenting possible symbolic values of the attribute, if the attribute isnominal.  Finally, every attribute definition must be terminated by a period..PPRipper also supports .I ignored and.I suppressedattributes.Ignored attributes are completely ignored by the learning system.To define an ignored attribute, use a declaration of the form.I attribute_name: ignore.Suppressed attributes are similar, except that while theyare not used in Ripper's hypotheses, the number of values ofthe attribute does effect MDL-based pruning.  Hence,suppressing an attribute that was notused in a hypothesis should not change Ripper's performancein any way.

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久免费看少妇高潮| 国产乱码精品一品二品| 亚洲综合男人的天堂| 中文字幕综合网| 亚洲男同性视频| 中文字幕一区免费在线观看| 日韩一区二区三区电影| 91精品国产乱码久久蜜臀| 欧美一区二区网站| 日韩午夜中文字幕| 欧美精品一区二区三| 久久网站最新地址| 久久久久久久久久看片| 国产精品免费观看视频| 亚洲蜜桃精久久久久久久| 一区二区三区日韩精品视频| 一区二区三区在线免费观看| 亚洲成人你懂的| 免费成人小视频| 日韩三级电影网址| 久久女同精品一区二区| 国产精品久久久久久久久图文区| 亚洲特黄一级片| 亚洲bt欧美bt精品| 麻豆久久久久久久| 国产成人在线电影| 色婷婷亚洲一区二区三区| 欧美三级电影在线观看| 日韩女优视频免费观看| 亚洲国产电影在线观看| 亚洲永久精品国产| 麻豆国产精品官网| 成人高清免费观看| 欧美日韩国产精品自在自线| 欧美成人a视频| 中文字幕不卡在线播放| 一区二区日韩电影| 国内精品久久久久影院色| 成人av在线观| 欧美精品 国产精品| 国产亚洲成av人在线观看导航| 国产精品第一页第二页第三页| 亚洲高清在线视频| 国产精品一区二区免费不卡| 一本高清dvd不卡在线观看| 欧美一区二区视频免费观看| 欧美激情一区二区三区不卡| 亚洲一区二区在线免费看| 极品少妇一区二区三区精品视频| a级高清视频欧美日韩| 91精品在线麻豆| 国产精品大尺度| 日本一区中文字幕| 99久久久国产精品| 日韩欧美的一区二区| 亚洲欧美日韩小说| 国产精品综合av一区二区国产馆| 91精彩视频在线| 国产女同性恋一区二区| 天天免费综合色| 91论坛在线播放| 久久众筹精品私拍模特| 亚洲成人资源在线| 91蜜桃网址入口| 欧美激情综合在线| 久久99精品久久久久久动态图| 欧洲av在线精品| 成人免费在线视频| 国产盗摄女厕一区二区三区| 3atv一区二区三区| 一区二区免费视频| 成人av高清在线| 久久久无码精品亚洲日韩按摩| 三级久久三级久久| 色综合婷婷久久| 国产精品视频你懂的| 蜜桃精品视频在线| 91精品国产欧美日韩| 亚洲国产美女搞黄色| 91麻豆文化传媒在线观看| 国产欧美精品日韩区二区麻豆天美 | 播五月开心婷婷综合| www国产成人| 蜜臀av性久久久久蜜臀av麻豆| 欧洲在线/亚洲| 亚洲欧美乱综合| 91亚洲永久精品| 国产精品国产精品国产专区不蜜| 国产乱子轮精品视频| 日韩丝袜情趣美女图片| 五月激情综合网| 4438成人网| 三级不卡在线观看| 欧美精品v日韩精品v韩国精品v| 亚洲最大成人综合| 91福利在线观看| 一区二区理论电影在线观看| 色婷婷久久99综合精品jk白丝| 综合av第一页| 91成人免费在线视频| 亚洲午夜久久久久久久久久久| 在线观看国产一区二区| 亚洲在线一区二区三区| 欧美亚洲动漫制服丝袜| 亚洲.国产.中文慕字在线| 在线观看91av| 日本不卡视频在线观看| 精品日韩在线观看| 激情都市一区二区| 国产亚洲欧美一级| 丁香婷婷综合色啪| 自拍偷拍亚洲欧美日韩| 在线观看www91| 日日骚欧美日韩| 欧美一区二区视频在线观看2020 | 亚洲欧美韩国综合色| 91在线视频播放地址| 亚洲人成精品久久久久久| 在线精品亚洲一区二区不卡| 亚洲国产日韩av| 日韩欧美国产小视频| 国产乱码精品1区2区3区| 国产精品毛片无遮挡高清| 色综合天天综合在线视频| 亚洲一区二区不卡免费| 日韩精品一区二区三区视频| 国产电影精品久久禁18| 亚洲卡通动漫在线| 欧美精品高清视频| 精品一区二区三区在线视频| 中文字幕欧美三区| 欧美亚洲综合在线| 九九在线精品视频| 欧美国产成人在线| 欧美在线观看一区二区| 日韩av电影免费观看高清完整版| 精品播放一区二区| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 91 com成人网| 国产成人亚洲综合色影视| 亚洲欧美日韩国产中文在线| 7777精品伊人久久久大香线蕉经典版下载 | 亚洲成人精品一区二区| 日韩精品一区二区三区老鸭窝| 成人精品视频.| 日韩精彩视频在线观看| 久久精品日产第一区二区三区高清版| 色婷婷av久久久久久久| 久久国产精品一区二区| 亚洲男人的天堂网| 2017欧美狠狠色| 色网综合在线观看| 精品午夜一区二区三区在线观看| 亚洲欧洲日本在线| 日韩精品中文字幕一区| 日本高清视频一区二区| 黄色日韩网站视频| 亚洲一区二区av在线| 中文字幕不卡的av| 日韩免费高清av| 日本道精品一区二区三区 | 精品国产乱码久久久久久免费| 99久久99久久久精品齐齐| 久久99日本精品| 亚洲午夜av在线| 国产精品麻豆久久久| 91精品国产欧美一区二区18| 色综合天天综合给合国产| 韩国一区二区三区| 天天操天天色综合| 亚洲狠狠丁香婷婷综合久久久| 国产视频一区在线观看| 日韩亚洲欧美综合| 欧美午夜一区二区三区| 99re视频这里只有精品| 国产精品影视在线观看| 美国十次了思思久久精品导航| 一区二区三区四区在线播放| 国产欧美一二三区| 欧美xxxx在线观看| 91精品中文字幕一区二区三区| 欧美在线一区二区| 91老师片黄在线观看| 成人午夜又粗又硬又大| 国产精品一二三四| 蜜臀av性久久久久蜜臀av麻豆 | 欧美日韩性生活| 色综合久久中文综合久久97| 春色校园综合激情亚洲| 国产激情91久久精品导航| 久久99国产精品久久99果冻传媒| 午夜精品久久久久久久久| 夜夜爽夜夜爽精品视频| 亚洲欧美日韩国产一区二区三区| 国产精品久久久久久久久果冻传媒| 久久久91精品国产一区二区精品| 久久综合久久综合亚洲| 精品电影一区二区三区| 久久综合久色欧美综合狠狠| 亚洲精品一线二线三线无人区|