?? main.m
字號:
clc;
clear;
l_o=0.453;
l_r=0.475;
l_1=0.446;
l_2=0.446;
n=9;
w=3*10^8*2*pi;
E=8.854*10^(-12);
u=4*pi*10^(-7);
a=5*10^(-3);
d_r=0.3;
d_o=0.3;
d_l=0.3;
div_o=l_o/(n+1);
div_r=l_r/(n+1);
div_1=l_1/(n+1);
div_2=l_2/(n+1);
k=2*pi;
ita=120*pi;
F1=@zuobiao;
zb=feval(F1,0); %各段中點的坐標
zb1=feval(F1,1); %各段+點的坐標
zb2=feval(F1,-1); %各段-點的坐標
for p=1:4*n %計算p,q兩點之間的距離
for q=1:4*n
R(p,q)=sqrt((zb(p,1)-zb(q,1))^2+(zb(p,2)-zb(q,2))^2+(zb(p,3)-zb(q,3))^2);
end
end
for p=1:4*n %計算p+,q-之間的距離
for q=1:4*n
R1(p,q)=sqrt((zb1(p,1)-zb2(q,1))^2+(zb1(p,2)-zb2(q,2))^2+(zb1(p,3)-zb2(q,3))^2);
end
end
for p=1:4*n
for q=1:4*n
R2(p,q)=sqrt((zb2(p,1)-zb1(q,1))^2+(zb2(p,2)-zb1(q,2))^2+(zb2(p,3)-zb1(q,3))^2);
end
end
F2=@zmn;
S00=feval(F2,0,0,div_r,R,R1,R2); %計算各個分塊阻抗矩陣
S11=feval(F2,1,1,div_o,R,R1,R2);
S22=feval(F2,2,2,div_1,R,R1,R2);
S33=feval(F2,3,3,div_2,R,R1,R2);
F3=@zmn1;
S01=feval(F3,0,1,div_r,div_o,R,R1,R2);S02=feval(F3,0,2,div_r,div_1,R,R1,R2);
S03=feval(F3,0,3,div_r,div_2,R,R1,R2);S12=feval(F3,1,2,div_o,div_1,R,R1,R2);
S13=feval(F3,1,3,div_o,div_2,R,R1,R2); S23=feval(F3,2,3,div_1,div_2,R,R1,R2);
S10=S01.'; S20=S02.';S30=S03.'; S21=S12.'; S31=S13.'; S32=S23.';
S=[S00,S01,S02,S03;S10,S11,S12,S13;S20,S21,S22,S23;S30,S31,S32,S33];
P=4*S;
[C,lam]=eig(P);
[D,mumu]=eig(conj(P));
lamda=eig(P);
mu=eig(conj(P));
uu=C';
vv=D';
for p=1:4*n %對電壓矩陣賦值
if p==(n+(n+1)/2)
V(p,1)=1;
else
V(p,1)=0;
end
end
for p=1:4*n
AA(p,:)=dot(vv(p,:),V)/dot(vv(p,:),uu(p,:))/mu(p,:)*uu(p,:);
end
A=zeros(4*n,4*n);
A(1,:)=AA(1,:);
for p=2:1:4*n
A(p,:)=AA(p,:)+A(p-1,:);
end
I_n=inv(4*S)*V;%求電流矩陣
ss=1:4*n;
plot(ss,abs(I_n),'k',ss,abs(A(1,:)),'b*',ss,abs(A(2,:)),'g*',ss,abs(A(4*n,:)),'r*');
xlabel('分段數') ;
ylabel('電流大小 A');
title('四元八木天線電流分布曲線');
legend('矩量法','一次模','前二次模加','前4*n次模加');
I1_n=A(4*n,:); %把4*n修改
ii=n+(n+1)/2;
Z1_in=conj(1/I1_n(ii)) %正交模法輸入阻抗
Z_in=1/I_n(ii) %矩量法輸入阻抗
syms Theta;
syms Fi;
for q=1:n
E_n(1,q)=i*w*u*sin(Theta)*exp(i*k*((-d_r)*sin(Theta)*cos(Fi)+zb(q,3)*cos(Theta)))*div_r/(4*pi);
end
for q=(n+1):2*n;
E_n(1,q)=i*w*u*sin(Theta)*exp(i*k*zb(q,3)*cos(Theta))*div_o/(4*pi);
end
for q=(2*n+1):3*n
E_n(1,q)=i*w*u*sin(Theta)*exp(i*k*((d_o)*sin(Theta)*cos(Fi)+zb(q,3)*cos(Theta)))*div_1/(4*pi);
end
for q=(3*n+1):4*n
E_n(1,q)=i*w*u*sin(Theta)*exp(i*k*((d_o+d_l)*sin(Theta)*cos(Fi)+zb(q,3)*cos(Theta)))*div_2/(4*pi);
end
E=E_n*I_n; %矩量法計算增益系數
Emax=abs(subs(E,{Theta,Fi},{pi/2,0}));
G=4*pi*(Emax^2)/(ita*real(Z_in)*abs(I_n(14))^2)
%G_db=10*log10(G)
F=abs(E)/Emax;
F1=subs(F,'Fi',0);
F2=subs(F,'Theta',pi/2);
h=0:2*pi/100:2*pi;
F1=subs(F1,'Theta',h);
F2=subs(F2,'Fi',h);
E1=E_n*I1_n'; %正交模計算增益系數
Emax=abs(subs(E1,{Theta,Fi},{pi/2,0}));
G=4*pi*(Emax^2)/(ita*real(Z1_in)*abs(I1_n(14))^2)
H=abs(E1)/Emax;
H1=subs(H,'Fi',0);
H2=subs(H,'Theta',pi/2);
H1=subs(H1,'Theta',h);
H2=subs(H2,'Fi',h);
figure
polar(h,F1,'r*');
hold on
polar(h,H1,'b');
grid on
title('E面方向圖');
legend('矩量法','雙正交模法');
view(90,-90)
figure
polar(h,F2,'r*');
hold on
polar(h,H2,'b');
grid on
title('H面方向圖');
legend('矩量法','雙正交模法');
% figure;
%x=F*sin(Theta)*cos(Fi);
%y=F*sin(Theta)*sin(Fi);
%z=F*cos(Theta);
% ezsurf(x,y,z,120) ;
% title('立體方向圖')
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -