亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demje2.m

?? 遞歸貝葉斯估計的工具包
?? M
字號:
% DEMJE2 Demonstrate nonlinear time series joint estimation for Mackey-Glass chaotic time series
%
%  The Mackey-Glass time-delay differential equation is defined by
%
%            dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)
%
%  When x(0) = 1.2 and tau = 17, we have a non-periodic and non-convergent time series that
%  is very sensitive to initial conditions. (We assume x(t) = 0 when t < 0.)
%
%  We assume that the chaotic time series is generated with by a nonlinear autoregressive
%  model where the nonlinear functional unit is a feedforward neural network. We use a
%  tap length of 6 and a 6-4-1 MLP neural network (using the Netlab toolkit) with hyperbolic
%  tangent activation functions in the hidden layer and a linear output activation.
%
%   See also
%   GSSM_MACKEY_GLASS

%   Copyright  (c) Rudolph van der Merwe (2002)
%
%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for
%   academic use only (see included license file) and can be obtained by contacting
%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should
%   contact ericwan@ece.ogi.edu for commercial licensing information.
%
%   See LICENSE (which should be part of the main toolkit distribution) for more
%   detail.

%===============================================================================================

clc;
clear all; close all;

fprintf('\nDEMJE2:  This demonstration shows how the ReBEL toolkit is used for joint estimation\n');
fprintf('         on a nonlinear time series (Mackey-Glass-30) problem. The scalar observation\n');
fprintf('         is corrupted by additive white Gaussian noise. A neural network is used as a\n');
fprintf('         generative model for the time series. We estimate both the model parameters and\n');
fprintf('         the underlying clean state from the noisy observations.\n');
fprintf('         We compare the performance of an EKF and a SRCDKF by iterating on the same sequence.\n\n');
fprintf('    NOTE : This demos is quite computationally expensive... so on a slow computer it might take a while.\n\n');


%--- General setup

addrelpath('../gssm');         % add relative search path to example GSSM files to MATLABPATH
addrelpath('../data');         % add relative search path to example data files to MATLABPATH

%--- Initialise GSSM model from external system description script.
model = gssm_mackey_glass('init');


%--- Load normalized Mackey glass data set

load('mg30_normalized.mat');                           % loads mg30_data from ../data/mg30_normalized.mat

mg30_data = mg30_data(100:100+300-1);


%--- Build state space data matrix of input data

X = datamat(mg30_data, model.statedim);                 % pack vector of data into datamtrix for NN input

[dim,N]  = size(X);                                     % dimension and number of datapoints
y  = zeros(model.obsdim,N);                             % observation data buffer

clean_signal_var = var(mg30_data);                      % determine variance of clean time series

SNR = 3;                                                % 3db SNR
onoise_var = clean_signal_var/10^(SNR/10);              % determine needed observation noise variance for a given SNR

model.oNoise.cov = onoise_var;                            % set observation noise covariance

onoise = feval(model.oNoise.sample, model.oNoise, N);   % generate observation noise

y   = feval(model.hfun, model, X, onoise);   % generate observed time series (corrupted with observation noise)

%----

ftype1 = 'ekf';
ftype2 = 'srcdkf';


%--- Setup argument data structure which serves as input to
%--- the 'geninfds' function. This function generates the InferenceDS and
%--- SystemNoiseDS data structures which are needed by all inference algorithms
%--- in the PiLab toolkit.

Arg.type = 'joint';                                  % inference type (state estimation)
Arg.tag = 'Joint estimation for GSSM_MACKEY_GLASS system.';  % arbitrary ID tag
Arg.model = model;                                   % GSSM data structure of external system

InfDS = geninfds(Arg);                               % create inference data structure

[pNoise1, oNoise1, InfDS1] = gensysnoiseds(InfDS,ftype1);    % generate process and observation noise sources for EKF
[pNoise2, oNoise2, InfDS2] = gensysnoiseds(InfDS,ftype2);    % generate process and observation noise sources for SRCDKF


%--- Setup runtime buffers

Xh = zeros(InfDS.statedim,N);          % state estimation buffer
Px = eye(InfDS.statedim);            % initial state covariance
Px(model.statedim+1:end,model.statedim+1:end) = 0.1*eye(model.paramdim);

Xh(model.statedim+1:end,1) = mlpweightinit(model.nodes);              % randomize initial model parameters

Xh1 = Xh;
Px1 = Px;

Xh2 = Xh;
Sx2 = chol(Px)';                     % SRCDKF is a square-root algorithm and hence it operates on the Cholesky factor
                                     % of the covariance matrix
number_of_runs = 10;                  % we will iterate over the data 'number_of_runs' times

mse1 = zeros(1,number_of_runs);       % buffers to store the MSE of each runs estimate
mse2 = mse1;

mse1(1) = mean((y(1,:)-X(1,:)).^2)/var(y(1,:));    % initial MSE of noisy signal
mse2(1) = mse1(1);

%--- Setup process noise data structures for joint estimation

  pNoiseAdaptMethod = 'anneal';                                % setup process noise adaptation method (improves convergence)
  pNoiseAdaptParams = [0.995 1e-7];                            % annealing factor = 0.95     annealing floor variance = 1e-8

  pNoiseCov0 = 1e-4*eye(model.paramdim);

  pNoise1.adaptMethod = pNoiseAdaptMethod;
  pNoise1.adaptParams = pNoiseAdaptParams;

  pNoise2.adaptMethod = pNoiseAdaptMethod;
  pNoise2.adaptParams = pNoiseAdaptParams;

  pNoise1.cov(2:end,2:end) = pNoiseCov0;         % set initial variance of process noise parameter estimation subvector
  pNoise2.cov(2:end,2:end) = chol(pNoiseCov0)';  % set initial variance of process noise parameter estimation subvector


%---

fprintf('\n Running joint estimators ... \n\n');


%--- Call inference algorithm / estimator

for k=1:number_of_runs,

  fprintf(' [%d:%d] ',k,number_of_runs);


  %------------------- Extended Kalman Filter ------------------------------------


  [Xh1, Px1, pNoise1] = ekf(Xh1(:,1), Px1, pNoise1, oNoise1, y, [], [], InfDS1);


  %------------------- Square-root Central Difference Kalman Filter -------------

  InfDS2.spkfParams = sqrt(3); ;                                 % scale factor (CDKF parameter)

  [Xh2, Sx2, pNoise2] = srcdkf(Xh2(:,1), Sx2, pNoise2, oNoise2, y, [], [], InfDS2);

  %---------------------------------------------------------------------------------


  %--- Calculate normalized mean square estimation error

  mse1(k+1) = mean((Xh1(1,:)-X(1,:)).^2)/var(y(1,:));
  mse2(k+1) = mean((Xh2(1,:)-X(1,:)).^2)/var(y(1,:));

  %--- Plot results

  figure(1); clf; subplot('position',[0.025 0.1 0.95 0.8]);
  p1 = plot(X(1,:),'b','linewidth',2); hold on
  p2 = plot(y,'g+');
  p3 = plot(Xh1(1,:),'m');
  p4 = plot(Xh2(1,:),'r'); hold off
  legend([p1 p2 p3 p4],'clean','noisy','EKF estimate','SRCDKF estimate');
  xlabel('time');
  ylabel('x');
  title('DEMSE3 : Mackey-Glass-30 Chaotic Time Series Joint Estimation');

  figure(2);
  p1 = plot(mse1(2:k+1),'m-o'); hold on;
  p2 = plot(mse2(2:k+1),'r-s'); hold off;
  legend([p1 p2],'EKF','SRCDKF');
  title('Normalized MSE of Estimates');
  xlabel('k');
  ylabel('MSE');
  drawnow

  fprintf('  Mean-square-error (MSE) of estimates : EKF = %4.3f    SRCDKF = %4.3f\n', mse1(k+1), mse2(k+1));


  %-- Copy last estimate of model parameters to initial buffer position for next iteration...

  Xh1(model.statedim+1:end,1) = Xh1(model.statedim+1:end,end);              % copy model parameters over
  Xh1(1:model.statedim,1) = zeros(model.statedim,1);                        % reset state estimate
  Px1_temp = eye(InfDS.statedim);                                           % copy covariance of parameter estimates
  Px1_temp(model.statedim+1:end,model.statedim+1:end) = Px1(model.statedim+1:end,model.statedim+1:end);
  Px1 = Px1_temp;

  Xh2(model.statedim+1:end,1) = Xh2(model.statedim+1:end,end);              % copy model parameters over
  Xh2(1:model.statedim,1) = zeros(model.statedim,1);                        % reset state estimate
  Sx2_temp = eye(InfDS.statedim);                                           % copy covariance of parameter estimates
  Sx2_temp(model.statedim+1:end,model.statedim+1:end) = Sx2(model.statedim+1:end,model.statedim+1:end);
  Sx2 = Sx2_temp;


end


%--- House keeping

remrelpath('../gssm');       % remove relative search path to example GSSM files from MATLABPATH
remrelpath('../data');       % remove relative search path to example data files from MATLABPATH

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
蜜臀av国产精品久久久久| 国产精品久久久久久久浪潮网站| 色综合一个色综合亚洲| 成人激情小说乱人伦| 国产精品996| av网站一区二区三区| 菠萝蜜视频在线观看一区| 99久久综合国产精品| 99国产精品99久久久久久| 色一情一伦一子一伦一区| 不卡欧美aaaaa| 欧美午夜不卡在线观看免费| 欧美色中文字幕| 欧美一级欧美三级| 日韩欧美国产不卡| 国产日韩综合av| 亚洲另类中文字| 亚洲国产精品天堂| 狠狠色丁香婷婷综合| 国产成人精品一区二区三区网站观看| 成人avav影音| 在线观看日韩av先锋影音电影院| 欧美日韩在线直播| 久久亚洲综合色一区二区三区| 久久免费国产精品| 亚洲免费观看在线视频| 丝袜美腿成人在线| 丁香一区二区三区| 欧美色窝79yyyycom| 久久久综合精品| 亚洲美女电影在线| 日本三级韩国三级欧美三级| 国产一区日韩二区欧美三区| 一本久久a久久免费精品不卡| 7777精品伊人久久久大香线蕉经典版下载| 精品国产污污免费网站入口| 日韩毛片一二三区| 精品综合久久久久久8888| 99麻豆久久久国产精品免费| 欧美一级爆毛片| 亚洲精品美国一| 国产精品资源网站| 91福利国产成人精品照片| 一区二区三区四区国产精品| 日韩国产欧美一区二区三区| 国产夫妻精品视频| 91麻豆精品国产91久久久使用方法| 久久男人中文字幕资源站| 亚洲大片免费看| aaa亚洲精品| 久久久综合网站| 男人的天堂亚洲一区| 色8久久人人97超碰香蕉987| 久久众筹精品私拍模特| 日韩综合小视频| 一本色道久久综合精品竹菊| 国产欧美日韩另类一区| 美女性感视频久久| 欧美另类久久久品| 一区二区三区日韩| 94-欧美-setu| 国产精品萝li| 成人深夜福利app| 2020国产精品久久精品美国| 亚洲成av人片在线观看| 一本色道综合亚洲| 亚洲欧洲成人av每日更新| 福利一区福利二区| 国产日韩精品一区| 国产精品一级片| 久久综合色婷婷| 国产精品自拍一区| 久久久欧美精品sm网站| 狠狠色丁香久久婷婷综合丁香| 日韩欧美国产午夜精品| 奇米综合一区二区三区精品视频| 欧美精品v日韩精品v韩国精品v| 亚洲最色的网站| 精品视频在线看| 日本vs亚洲vs韩国一区三区二区 | 中文字幕精品一区二区三区精品| 久久电影国产免费久久电影| 欧美成人vr18sexvr| 狠狠久久亚洲欧美| 日本一区二区三区在线不卡| 成人午夜电影网站| 亚洲女人的天堂| 欧美精品丝袜中出| 久久精品国产精品亚洲精品| 久久久久久一二三区| 国产69精品久久777的优势| 中文字幕制服丝袜一区二区三区 | 一区二区三区精品久久久| 99国产精品视频免费观看| 一区二区欧美国产| 欧美一区二区三区成人| 国产精品资源在线看| 国产精品久久久久久福利一牛影视| 99久久99久久免费精品蜜臀| 亚洲综合激情网| 欧美videossexotv100| 丁香激情综合国产| 亚洲高清不卡在线| 久久亚洲精品国产精品紫薇| 不卡的电视剧免费网站有什么| 亚洲嫩草精品久久| 欧美变态凌虐bdsm| 91同城在线观看| 久久精品久久精品| 自拍偷自拍亚洲精品播放| 欧美一区二区三区在线| 丁香天五香天堂综合| 亚洲图片欧美综合| 国产欧美日韩在线看| 欧美精品自拍偷拍动漫精品| 国产精品 日产精品 欧美精品| 亚洲最大的成人av| 国产丝袜欧美中文另类| 欧美伦理电影网| 91视频.com| 国产精品123| 老汉av免费一区二区三区| 亚洲欧美日韩国产一区二区三区 | 日韩精品电影在线| 国产三级一区二区三区| 欧美日韩免费视频| 97精品电影院| 国产成人免费视频一区| 美女网站视频久久| 亚洲最色的网站| **欧美大码日韩| 久久久777精品电影网影网| 4438x成人网最大色成网站| 91免费版在线| 丁香一区二区三区| 国产精品一卡二| 精品一区二区三区久久| 亚洲成av人在线观看| 伊人一区二区三区| 亚洲色欲色欲www| 国产精品久99| 国产精品久久久久影院亚瑟| 国产亚洲一区二区三区| 欧美r级在线观看| 日韩一区二区免费在线电影 | 5858s免费视频成人| 91国内精品野花午夜精品| 豆国产96在线|亚洲| 国产在线日韩欧美| 国产一区二区调教| 国产一区亚洲一区| 国产乱子轮精品视频| 国产久卡久卡久卡久卡视频精品| 九色综合国产一区二区三区| 免费成人在线观看| 精东粉嫩av免费一区二区三区| 免费观看在线综合| 国内久久精品视频| 国产精品影视网| 北岛玲一区二区三区四区| 国产不卡在线一区| 日韩欧美国产午夜精品| 日韩精品一区二| 久久亚区不卡日本| 国产精品人成在线观看免费| 国产精品久久久久久久久图文区 | 日韩和欧美一区二区| 日本aⅴ免费视频一区二区三区| 日韩和的一区二区| 国产美女久久久久| av中文字幕亚洲| 欧美三片在线视频观看| 日韩一区二区影院| 中文字幕欧美日本乱码一线二线| 亚洲视频在线一区| 丝袜亚洲另类丝袜在线| 国产资源在线一区| 99精品国产热久久91蜜凸| 欧美日韩一区二区欧美激情| 精品久久久久久亚洲综合网| 久久久久久久久久久黄色| 亚洲图片激情小说| 日本不卡1234视频| 97精品超碰一区二区三区| 欧美精品 日韩| 国产日韩欧美不卡| 亚洲成人综合网站| 国产精品一二一区| 欧美日韩国产系列| 国产网红主播福利一区二区| 亚洲国产日韩一区二区| 激情国产一区二区 | 五月婷婷综合激情| 国产a视频精品免费观看| 欧美日免费三级在线| 国产午夜亚洲精品不卡| 午夜精品福利一区二区三区av| 国产麻豆视频一区| 欧美疯狂做受xxxx富婆| 中文字幕字幕中文在线中不卡视频|