亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? gssm_speech_linear.m

?? 遞歸貝葉斯估計(jì)的工具包
?? M
字號(hào):
% GSSM_SPEECH  Generalized state space model for single phoneme speech enhancement%% A single speech phoneme sampled at 8kHz is corrupted by additive colored (pink) noise.% We use a simple linear autoregressive model (10th order) to model the generative model% of the speech signal.% We model the pink noise by a known 6th order linear autoregressive process driven by white Gaussian% noise with known variance. The SNR of the noisy signal (y=clean+noise) is 0dB.%% The colored noise modeling (augmented state space model) is done according to the method proposed in:% "Filtering of Colored Noise for Speech Enhancment and Coding", by J. D. Gibson, B. Koo and S. D. Gray,% IEEE Transactions on Signal Processing, Vol. 39, No. 8, August 1991.%%   Copyright  (c) Rudolph van der Merwe (2002)%%   This file is part of the ReBEL Toolkit. The ReBEL Toolkit is available free for%   academic use only (see included license file) and can be obtained by contacting%   rvdmerwe@ece.ogi.edu.  Businesses wishing to obtain a copy of the software should%   contact ericwan@ece.ogi.edu for commercial licensing information.%%   See LICENSE (which should be part of the main toolkit distribution) for more%   detail.%===============================================================================================function [varargout] = model_interface(func, varargin)  switch func    %--- Initialize GSSM data structure --------------------------------------------------------    case 'init'      model = init(varargin);        error(consistent(model,'gssm'));               % check consistentency of initialized model      varargout{1} = model;    %--------------------------------------------------------------------------------------------    otherwise      error(['Function ''' func ''' not supported.']);  end%===============================================================================================function model = init(init_args)  load speech_data.mat noise_model noise_pnvar noisy clean;    % Loads colored noise model (LPC parameters) and process noise variance  speech_taps = 10;  speech_model = aryule(clean,speech_taps);  speech_pnvar = var(filter(speech_model,1,clean));  speech_model = -1*speech_model(2:end);  noise_taps  = length(noise_model);     % number of noise filter taps  %-- REQUIRED FIELDS  model.type = 'gssm';                  % object type = generalized state space model  model.tag  = 'GSSM_Speech_Colored_Noise_Linear';  % ID tag  model.ffun_type = 'lti';              % state transition function type  : linear time invariant  model.hfun_type = 'lti';              % state observation function type : linear time invariant  model.ffun       = @ffun;             % functionhandle to FFUN  model.hfun       = @hfun;             % functionhandle to HFUN  model.setparams  = @setparams;        % functionhandle to SETPARAMS  model.statedim   = speech_taps + noise_taps;   % state dimension 10 for speech state + length of colored noise state  model.obsdim     = 1;                 % observation dimension  model.paramdim   = speech_taps + noise_taps;   % parameter dimension  (weights + colored noise parameters)  model.U1dim      = 0;                 % exogenous control input 1 dimension  model.U2dim      = 0;                 % exogenous control input 2 dimension  model.Vdim       = 2;                 % process noise dimension  (augmented process noise needed for colored noise,                                        % resulting in perfect measurment model with no explicit observation noise  model.Ndim       = 0;                 % observation noise dimension (efective noise dimension is 0 for colored noise case)  %-- SETUP NOISE DATA STRUCTURES  Arg.type = 'gaussian';                % process noise source  Arg.cov_type = 'full';  Arg.dim = model.Vdim;  Arg.mu = [0; 0];  Arg.cov  = [speech_pnvar 0; 0 noise_pnvar];        % process noise variance  model.pNoise = gennoiseds(Arg);       % generate process noise data structure : zero mean white Gaussian noise  Arg.type = 'gaussian';  Arg.dim = 0;  Arg.mu = [];  Arg.cov  = [];  model.oNoise = gennoiseds(Arg);     % This observation noise model is actually only a dummy model, in that for the colored                                      % noise case, the observation noise enters the state observation function implicitely.  %-- OPTIONAL FIELDS  model.noise_model = noise_model(:)';    % AR model for colored noise  model.speech_model = speech_model(:)';  model.speech_taps = speech_taps;  model.noise_taps = noise_taps;  %-- Call 'setparams' function once to make sure model parameters are correctly initialized  model = setparams(model, [speech_model(:); noise_model(:)]);    % set/store the model parameters%===============================================================================================function model = setparams(model, params, index_vector)  if (nargin==2)    model.params = params(:);  elseif (nargin==3)    model.params(index_vector) = params(:);  else    error('[ setparams ] Incorrect number of input arguments.');  end  model.speech_model = model.params(1:model.speech_taps)';  model.noise_model = model.params(model.speech_taps+1:end)';%===============================================================================================function new_state = ffun(model, state, V, U1)  [dim,N] = size(state);  speech_taps = model.speech_taps;  new_state = zeros(dim,N);  %-- SPEECH STATE UPDATE          -  linear AR  new_state(1,:) = model.speech_model*state(1:speech_taps,:);  new_state(2:speech_taps,:) = state(1:speech_taps-1,:);  %-- COLORED NOISE STATE UPDATE   -  linear AR  new_state(speech_taps+1,:) = model.noise_model*state(speech_taps+1:end,:);  new_state(speech_taps+2:end,:) = state(speech_taps+1:end-1,:);  if ~isempty(V)    new_state(1,:) = new_state(1,:) + V(1,:);    new_state(speech_taps+1,:) = new_state(speech_taps+1,:) + V(2,:);  end%===============================================================================================function observ = hfun(model, state, N, U2)  if isempty(N),    observ = state(1,:) + state(model.speech_taps+1,:);  else    observ = state(1,:) + state(model.speech_taps+1,:) + N(1,:);  end

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天天影视网天天综合色在线播放| 91精品免费在线观看| 色偷偷久久人人79超碰人人澡| 91精品福利视频| 9191成人精品久久| 久久免费精品国产久精品久久久久| 中文字幕一区三区| 日本欧美一区二区三区乱码| 国产成人自拍在线| 欧美午夜一区二区三区免费大片| 91精品一区二区三区久久久久久| 久久九九影视网| 亚洲国产另类精品专区| 精品亚洲国产成人av制服丝袜| proumb性欧美在线观看| 欧美伦理电影网| 国产日韩欧美综合在线| 亚洲国产欧美在线| 国产成人在线色| 欧美军同video69gay| 国产日韩欧美a| 日韩精品亚洲专区| 91免费观看视频在线| 久久综合九色综合97婷婷| 亚洲理论在线观看| 国产传媒欧美日韩成人| 欧美日韩亚洲国产综合| 中文字幕欧美激情| 日韩国产精品久久| 97久久超碰精品国产| 欧美变态凌虐bdsm| 亚洲线精品一区二区三区八戒| 国产经典欧美精品| 7777精品伊人久久久大香线蕉超级流畅 | 精品久久久三级丝袜| 一区二区三区自拍| 国产高清不卡一区二区| 51久久夜色精品国产麻豆| 中文字幕一区二区三区在线播放 | 日韩一区二区免费视频| 亚洲视频一区二区在线| 国产美女主播视频一区| 69av一区二区三区| 亚洲一区二区在线视频| 成人激情午夜影院| 久久婷婷久久一区二区三区| 日韩电影在线免费看| 色欲综合视频天天天| 国产三级精品视频| 久久成人麻豆午夜电影| 欧美老年两性高潮| 一区二区三区免费| 91亚洲精品久久久蜜桃| 欧美激情综合五月色丁香| 久草在线在线精品观看| 3d成人h动漫网站入口| 亚洲愉拍自拍另类高清精品| 99国产欧美久久久精品| 欧美韩国日本一区| 国产精品香蕉一区二区三区| 日韩美女天天操| 午夜国产精品一区| 色老汉av一区二区三区| 综合在线观看色| 成人免费视频视频| 国产精品无遮挡| 国产91丝袜在线观看| 久久婷婷综合激情| 国产精品一线二线三线| 久久久久国产成人精品亚洲午夜| 精品一区二区成人精品| 欧美va天堂va视频va在线| 日本美女一区二区| 日韩天堂在线观看| 久久精品72免费观看| 日韩免费一区二区| 久久99热这里只有精品| 精品久久一区二区| 国产乱国产乱300精品| 久久久久国色av免费看影院| 国产一区二区三区在线观看精品 | 国内外精品视频| 精品动漫一区二区三区在线观看| 激情文学综合丁香| 国产欧美一区二区精品忘忧草| 丁香天五香天堂综合| 国产精品久久久一本精品| 99久久免费视频.com| 中文字幕亚洲成人| 91黄视频在线观看| 丝袜美腿亚洲综合| 精品欧美久久久| 国产盗摄视频一区二区三区| 一区在线观看免费| 国产精品国产三级国产专播品爱网 | 色中色一区二区| 日韩精品亚洲专区| 久久综合99re88久久爱| 国产91清纯白嫩初高中在线观看| 国产精品久久久久久福利一牛影视| 91在线精品秘密一区二区| 一区二区三区欧美视频| 91精品国产一区二区三区香蕉| 老司机精品视频一区二区三区| 久久日韩粉嫩一区二区三区| 成人手机在线视频| 亚洲第一激情av| 精品伦理精品一区| 99久久久久久| 偷窥少妇高潮呻吟av久久免费 | 国产成人一级电影| 亚洲视频精选在线| 51精品久久久久久久蜜臀| 国产成人综合亚洲91猫咪| 一区二区三区高清| 日韩美女在线视频| 色综合久久天天综合网| 日韩在线一二三区| 日本一区二区视频在线| 欧美午夜不卡视频| 国产精品中文有码| 午夜精品福利在线| 国产亚洲一二三区| 欧美日韩视频在线第一区| 狠狠色狠狠色综合| 亚洲精品中文在线观看| 欧美大胆人体bbbb| 色综合天天性综合| 久久国产精品99精品国产| 亚洲私人黄色宅男| 日韩免费高清电影| 色综合久久天天| 国产成人在线视频免费播放| 午夜一区二区三区在线观看| 国产日本欧美一区二区| 欧美日韩一级视频| 国产suv精品一区二区6| 日本伊人精品一区二区三区观看方式| 中文字幕av一区二区三区免费看 | 青青草原综合久久大伊人精品优势| 国产精品国产自产拍高清av| 欧美日韩在线免费视频| 久久九九久精品国产免费直播| 一区二区久久久久久| 成人av中文字幕| 中文字幕在线不卡一区二区三区| 555www色欧美视频| 色美美综合视频| 国产夫妻精品视频| 久久成人免费网| 日韩中文欧美在线| 一区二区三区视频在线观看| 久久九九影视网| 日韩精品一区二区三区视频 | 一区二区三区中文字幕| 国产精品白丝jk白祙喷水网站| 欧美刺激午夜性久久久久久久| 日本系列欧美系列| 日韩一区二区三区高清免费看看| 日本成人中文字幕在线视频| 欧美电影一区二区| 蜜桃av一区二区三区电影| 欧美一二三区精品| 国产原创一区二区三区| 亚洲精品成人悠悠色影视| 欧美一区二区精品久久911| 色综合视频在线观看| 色哟哟在线观看一区二区三区| 91小宝寻花一区二区三区| 91麻豆免费观看| 欧美吞精做爰啪啪高潮| 欧美人与禽zozo性伦| 3atv一区二区三区| 精品国产乱码久久久久久久| 国产日韩欧美在线一区| 国产精品欧美一区二区三区| 亚洲视频 欧洲视频| 亚洲午夜久久久久久久久电影网| 日日夜夜免费精品| 久久精品国产久精国产| 国产毛片一区二区| 91在线丨porny丨国产| 在线区一区二视频| 日韩一区二区三区电影在线观看 | 色狠狠色噜噜噜综合网| 欧美日韩免费高清一区色橹橹| 91精品蜜臀在线一区尤物| 精品国产一区二区亚洲人成毛片 | 欧美日韩一级二级三级| 日韩一区二区在线观看| 国产欧美视频一区二区| 亚洲区小说区图片区qvod| 亚洲动漫第一页| 国产一区二区按摩在线观看| 91一区一区三区| 91精品国产一区二区三区蜜臀| www一区二区| 一二三四社区欧美黄| 秋霞国产午夜精品免费视频 | 日韩高清不卡在线|