亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? changelog

?? 遞歸貝葉斯估計的工具包
??
字號:
ReBEL ChangeLog***************This is the main ReBEL Changelog file documenting the ongoing evolution and debugging process of the ReBEL Toolkit. Below the changes from onemajor or minor release to the next is outlined. The numbers in bracketsafter each release version number is the number of subsequent 'bugfix' releases which has been made. So "Version 0.2 (1,2)" implies 2 bugfix versions has been released since the release of ReBEL-0.2, namelyReBEL-0.2.1 and ReBEL-0.2.2. The details of each bugfix release is documented in more detail in the Bugfixes file which can be found the root ReBEL directory.		Version 0.2 (1,2,3,4,5,6)===========* Added new inference algorithms:  - Gaussian Sum Particle Filter   (gspf)  - Gaussian Mixture Sigma-Point Particle Filter (gmsppf)         <still in beta state>  These hybrid particle filters try to improve on the generic bootstrap   particle filter. The GSPF (developed by J. Kotecha & P. Djuric) uses   a GMM representation of the posterior state distribution, efectively   smoothing out the particle based representation. This filter requires   the noise sources to be modeled as GMMs themselves.   The GMSPPF is a hybrid extension of the Sigma-Point Particle Filter   (sppf) that uses a SPKF-filterbank propagated GMM proposal distribution   to sample the particles from. The actual posterior state distribution   is also modeled with a GMM (like in the GSPF), but the difference is   that this GMM is fitted to the posterior weighted particle set (as   generated by the importance sampling step) by means of an EM algorithm.  This eliminate the need for a variance increasing final resampling stage.  This filter has equal (or better) performance compared to the SPPF, but   has a significantly lower computational cost. See code for more details.	* Added a new noise source type to the 'gennoiseds' function. This is  a Gaussian mixture model noise source (type='gmm'). See gennoiseds.m  for more detail.	* Added a new data structure (GMM) and functions to the core module of   ReBEL to support Gaussian mixture models (GMMs). These functions are:    - gmmfit : Fit/train a GMM to data using the EM algorithm.    - gmminitialize : Initiliaze a GMM (used internally by gmmfit)    - gmmsample : Sample efficiently from a GMM    - gmmprobability : calculate all probabilities of a GMM and a related 	               dataset.   See the function definitions for more detail.	* The Netlab toolkit (neural network software for Matlab) is now bundled   with ReBEL. This is not a needed/crucial component of ReBEL, but   complements it nicely when certain neural network structures are needed  within user defined models, etc. For more detail on Netlab, see  http://www.ncrg.aston.ac.uk/netlab/ (Thanks to Ian Nabney and   Christopher Bishop for developing such a usefull resource). * Added more examples:  - Dual Estimation : Added a speech enhancement demo based on dual SPKF     estimation. A speech fragment (phoneme), corrupted by additive    colored Gaussian noise is cleaned up (filtered) through the use of a    dual SPKF estimator. This example demonstrates how colored noise     is implemented withion the ReBEL framework as well as how dual     estimation is done.* All particle filters : Changed the definition for all particle filters  of the '.resampleThreshold' field in the InferenceDS data structure.  It used to be an absolute number of particles, the threshold size  of the effective particle set. This (the threshold) has now been    changed to a relative ratio of resampleThreshold = N_efective/N_total.	* Changes (actually additions) to the parameter estimation  meta system blocks in 'geninfds.m':  - Changed the paramFunSelect option of 'both' to 'both-p' which    indicates the use of a parallel combination of FFUN and HFUN in    the parameter estimation observation function, i.e.                    observ = |FFUN(X)|                   |HFUN(X)|  - Changed the meaning and implementation of the paramFunSelect    option 'both'. This option (the default) now implies a serial    concatenation of the original system state transition and state    observation functions (FFUN and HFUN) to form the observation    function for parameter estimation. The following is now implied    for the paramFunSelect='both' option          observ = HFUN(FFUN(X)) * Made changes to the NoiseDS data structure:  - Changed '.ns_subtype' field to '.cov_type' (covariance type)    Note : The '.subtype' field of the argument data structure used as    input to the 'gennoiseds' function has also changed to '.cov_type'.  - Changed covariance field name in all 'NoiseDS' data structures from    '.P' and '.S' to '.cov'. This might seem ambiguous, but the type of    covariance (full, sqrt, diag, etc.) is already clearly evident    from the '.cov_type' field.  - Removed the '.sqrt_flag' and '.diag_flag' fields. These where    superfluous and did not serve the orginaly planned beneficial    purpose.* Bug fixes : Numerous bugs/typos have been fixed. Some of the more    serious ones were:    - geninfds::linearize_generic : 	 o Interface to function requires a varargout list which was 	   not honored. This is now fixed.	 o Internal indexing error.        Version 0.1 (1)===========* Initial Alpha release

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美xxxxx裸体时装秀| 成人午夜视频在线观看| 洋洋av久久久久久久一区| 国产精品视频一二三区| 久久久99免费| 337p粉嫩大胆噜噜噜噜噜91av| 4438亚洲最大| 欧美zozo另类异族| 久久欧美中文字幕| 国产欧美精品一区二区色综合朱莉 | 国产二区国产一区在线观看 | 日韩一级免费一区| 欧美大黄免费观看| 欧美精品一区二区三| 久久久久久99久久久精品网站| 26uuu亚洲| 国产精品毛片高清在线完整版 | 成人免费黄色大片| 91美女蜜桃在线| 欧美另类videos死尸| 日韩免费观看高清完整版 | 日韩精品一区二| 欧美精品一区二区三区蜜桃| 国产清纯美女被跳蛋高潮一区二区久久w| 精品国产一区二区三区av性色| 久久亚洲影视婷婷| 中文字幕一区二区在线观看| 亚洲视频一区二区在线观看| 亚洲一级二级三级| 精品一区二区精品| 99久久精品国产麻豆演员表| 欧美午夜不卡在线观看免费| 欧美一区二区久久久| 国产婷婷一区二区| 亚洲六月丁香色婷婷综合久久| 亚洲一区二区三区在线看| 麻豆成人综合网| 成人在线视频一区二区| 精品1区2区在线观看| 亚洲图片激情小说| 青青草精品视频| 国产91丝袜在线18| 欧美日韩电影在线| 国产婷婷精品av在线| 亚洲国产精品一区二区www在线| 麻豆精品国产传媒mv男同| 成人爽a毛片一区二区免费| 欧美日韩综合在线免费观看| 精品国产乱码久久久久久夜甘婷婷| 国产精品美女久久久久久久久久久 | 欧美午夜精品久久久久久孕妇| 日韩色视频在线观看| 日韩一区有码在线| 奇米精品一区二区三区在线观看| 成人免费va视频| 欧美一区二区三区四区高清| 中文一区在线播放| 美女网站一区二区| 色中色一区二区| 2024国产精品视频| 五月天久久比比资源色| 成人午夜大片免费观看| 欧美成va人片在线观看| 曰韩精品一区二区| 国产福利一区在线| 欧美一二三在线| 亚洲另类在线制服丝袜| 国产精品中文有码| 日韩一区二区三区免费看 | 污片在线观看一区二区| caoporn国产精品| 精品理论电影在线观看| 亚洲成人自拍偷拍| 91在线视频观看| 国产肉丝袜一区二区| 亚洲亚洲人成综合网络| av午夜精品一区二区三区| 久久人人97超碰com| 青草av.久久免费一区| 欧美日韩综合在线免费观看| 综合久久一区二区三区| 成人午夜电影小说| 久久久精品免费免费| 免费人成在线不卡| 欧美日韩一区国产| 亚洲激情自拍偷拍| 91片在线免费观看| 性做久久久久久免费观看欧美| 色老汉一区二区三区| 国产精品久久久一区麻豆最新章节| 久久草av在线| 日韩免费性生活视频播放| 日韩精品一级二级| 欧美精品久久99久久在免费线| 亚洲激情自拍视频| 日本韩国欧美在线| 亚洲乱码国产乱码精品精的特点| proumb性欧美在线观看| 中文字幕五月欧美| 成人激情校园春色| 国产人伦精品一区二区| 国产盗摄视频一区二区三区| 久久久久亚洲蜜桃| 国产成人在线网站| 国产三级三级三级精品8ⅰ区| 国内精品国产成人国产三级粉色| 精品欧美一区二区三区精品久久| 久久精品国产精品青草| 精品99999| 国产91富婆露脸刺激对白| 亚洲国产成人在线| 99久久99久久精品免费看蜜桃| 国产精品高潮呻吟| 91偷拍与自偷拍精品| 亚洲猫色日本管| 欧美日韩精品专区| 免费精品视频最新在线| 精品欧美一区二区久久| 国产成人精品亚洲日本在线桃色| 国产农村妇女毛片精品久久麻豆 | 亚洲成人免费影院| 欧美一区二区黄| 九九九久久久精品| 欧美激情综合五月色丁香| 成人av在线影院| 亚洲综合小说图片| 欧美顶级少妇做爰| 黄色资源网久久资源365| 亚洲国产激情av| 91久久精品一区二区三区| 午夜欧美一区二区三区在线播放 | 91在线云播放| 午夜日韩在线电影| 久久综合色8888| 波多野结衣在线一区| 亚洲一区二区三区四区在线免费观看 | 中文字幕亚洲综合久久菠萝蜜| 欧美影院一区二区| 经典一区二区三区| 亚洲欧洲中文日韩久久av乱码| 欧美精品在线观看播放| 国产剧情在线观看一区二区| 中文字幕一区二区三区在线播放 | 国产欧美在线观看一区| 色婷婷亚洲精品| 麻豆精品一区二区综合av| 中文字幕在线观看不卡| 欧美二区三区的天堂| 成人手机电影网| 日韩成人午夜精品| 亚洲国产电影在线观看| 91精品在线观看入口| 成人免费毛片a| 日本不卡一区二区三区高清视频| 国产日产欧美一区二区视频| 欧美性淫爽ww久久久久无| 国产精品夜夜嗨| 亚洲香肠在线观看| 中文字幕av一区二区三区高| 欧美剧情片在线观看| 成人毛片视频在线观看| 日本不卡的三区四区五区| 亚洲欧洲av一区二区三区久久| 91精品国产综合久久香蕉麻豆| 9人人澡人人爽人人精品| 蜜桃视频在线一区| 亚洲最大成人网4388xx| 国产亚洲综合av| 在线成人av网站| 色8久久精品久久久久久蜜| 国产一区二区在线视频| 天堂蜜桃91精品| 一区二区欧美精品| 国产精品不卡一区二区三区| 精品久久久久久久久久久久久久久 | 欧美精品1区2区3区| 成人91在线观看| 国产一区福利在线| 蜜臀av亚洲一区中文字幕| 一区二区三区**美女毛片| 国产精品国产a| 欧美激情综合五月色丁香| 欧美xingq一区二区| 欧美妇女性影城| 欧美三级乱人伦电影| 91麻豆免费在线观看| 成人免费高清在线| 高清免费成人av| 国产一区二区精品久久91| 青青国产91久久久久久| 日日夜夜免费精品| 亚洲国产一区视频| 亚洲精品ww久久久久久p站| 亚洲欧洲色图综合| 中文字幕五月欧美| 亚洲欧洲精品天堂一级| 中文字幕久久午夜不卡| 久久精品夜夜夜夜久久| 久久久精品2019中文字幕之3| 久久一区二区三区国产精品|