亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? 7-14.m

?? matlab數字信號與應用源代碼7
?? M
字號:
%例程7-14   基于卡爾曼濾波器的機動目標跟蹤
% Make a point move in the 2D plane
% State = (x y xdot ydot). We only observe (x y).
 
% X(t+1) = Φ(t) X(t) + noise(Q)
% Y(t) = H X(t) + noise(R)
 
ss = 4; % state size
os = 2; % observation size
F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1]; 
H = [1 0 0 0; 0 1 0 0];
Q = 0.1*eye(ss);
R = 1*eye(os);
initx = [10 10 1 0]';   %target initial parameters
initV = 10*eye(ss);
 
seed = 9;
rand('state', seed);
randn('state', seed);
T = 15;
[x,y] = sample_lds(F, H, Q, R, initx, T);  %generate target data
 
%kalman filter 
[xfilt, Vfilt, VVfilt, loglik] = kalman_filter(y, F, H, Q, R, initx, initV);                                  
% one step predict
[xsmooth, Vsmooth] = kalman_smoother(y, F, H, Q, R, initx, initV);
%calculate the error between the filtered data and the real data 
dfilt = x([1 2],:) - xfilt([1 2],:); 
mse_filt = sqrt(sum(sum(dfilt.^2)));   
 
dsmooth = x([1 2],:) - xsmooth([1 2],:);
mse_smooth = sqrt(sum(sum(dsmooth.^2)))


figure(1)
clf
%subplot(2,1,1)
hold on
plot(x(1,:), x(2,:), 'ks-');
plot(y(1,:), y(2,:), 'g*');
plot(xfilt(1,:), xfilt(2,:), 'rx:');
for t=1:T, plotgauss2d(xfilt(1:2,t), Vfilt(1:2, 1:2, t)); end
hold off
legend('true', 'observed', 'filtered', 3)
xlabel('x')
ylabel('y')
% 3x3 inches
set(gcf,'units','inches');
set(gcf,'PaperPosition',[0 0 3 3])  
%print(gcf,'-depsc','/home/eecs/murphyk/public_html/Bayes/Figures/aima_filtered.eps');
%print(gcf,'-djpeg','-r100', '/home/eecs/murphyk/public_html/Bayes/Figures/aima_filtered.jpg');
 
 figure(2)
%subplot(2,1,2)
hold on
plot(x(1,:), x(2,:), 'ks-');
plot(y(1,:), y(2,:), 'g*');
plot(xsmooth(1,:), xsmooth(2,:), 'rx:');
for t=1:T, plotgauss2d(xsmooth(1:2,t), Vsmooth(1:2, 1:2, t)); end
hold off
legend('true', 'observed', 'smoothed', 3)
xlabel('x')
ylabel('y')
 
 % 3x3 inches
set(gcf,'units','inches');
set(gcf,'PaperPosition',[0 0 3 3])  
%print(gcf,'-djpeg','-r100', '/home/eecs/murphyk/public_html/Bayes/Figures/aima_smoothed.jpg');
%print(gcf,'-depsc','/home/eecs/murphyk/public_html/Bayes/Figures/aima_smoothed.eps');


function [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, varargin)
% Kalman filter.
% [x, V, VV, loglik] = kalman_filter(y, A, C, Q, R, init_x, init_V, ...)
%
% INPUTS:
% y(:,t)   - the observation at time t
% A - the system matrix
% C - the observation matrix 
% Q - the system covariance 
% R - the observation covariance
% init_x - the initial state (column) vector 
% init_V - the initial state covariance 
%
% OPTIONAL INPUTS (string/value pairs [default in brackets])
% 'model' - model(t)=m means use params from model m at time t [ones(1,T) ]
%     In this case, all the above matrices take an additional final dimension,
%     i.e., A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m).
%     However, init_x and init_V are independent of model(1).
% 'u'     - u(:,t) the control signal at time t [ [] ]
% 'B'     - B(:,:,m) the input regression matrix for model m
%
% OUTPUTS (where X is the hidden state being estimated)
% x(:,t) = E[X(:,t) | y(:,1:t)]
% V(:,:,t) = Cov[X(:,t) | y(:,1:t)]
% VV(:,:,t) = Cov[X(:,t), X(:,t-1) | y(:,1:t)] t >= 2
% loglik = sum{t=1}^T log P(y(:,t))
%
% If an input signal is specified, we also condition on it:
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t)]
% If a model sequence is specified, we also condition on it:
% e.g., x(:,t) = E[X(:,t) | y(:,1:t), u(:, 1:t), m(1:t)]
 
[os T] = size(y);
ss = size(A,1); % size of state space
 
% set default params
model = ones(1,T);
u = [];
B = [];
ndx = [];
 
args = varargin;
nargs = length(args);
for i=1:2:nargs
  switch args{i}
   case 'model', model = args{i+1};
   case 'u', u = args{i+1};
   case 'B', B = args{i+1};
   case 'ndx', ndx = args{i+1};
   otherwise, error(['unrecognized argument ' args{i}])
  end
end
 
x = zeros(ss, T);
V = zeros(ss, ss, T);
VV = zeros(ss, ss, T);
 
loglik = 0;
for t=1:T
  m = model(t);
  if t==1
    %prevx = init_x(:,m);
    %prevV = init_V(:,:,m);
    prevx = init_x;
    prevV = init_V;
    initial = 1;
  else
    prevx = x(:,t-1);
    prevV = V(:,:,t-1);
    initial = 0;
  end
  if isempty(u)
    [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
    kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, 'initial', initial);
  else
    if isempty(ndx)
      [x(:,t), V(:,:,t), LL, VV(:,:,t)] = ...
      kalman_update(A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx, prevV, ... 
            'initial', initial, 'u', u(:,t), 'B', B(:,:,m));
    else
      i = ndx{t};
      % copy over all elements; only some will get updated
      x(:,t) = prevx;
      prevP = inv(prevV);
      prevPsmall = prevP(i,i);
      prevVsmall = inv(prevPsmall);
      [x(i,t), smallV, LL, VV(i,i,t)] = ...
      kalman_update(A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall, ...
            'initial', initial, 'u', u(:,t), 'B', B(i,:,m));
      smallP = inv(smallV);
      prevP(i,i) = smallP;
      V(:,:,t) = inv(prevP);
    end    
  end
  loglik = loglik + LL;
end
 

function [xnew, Vnew, loglik, VVnew] = kalman_update(A, C, Q, R, y, x, V, varargin)
% KALMAN_UPDATE Do a one step update of the Kalman filter
% [xnew, Vnew, loglik] = kalman_update(A, C, Q, R, y, x, V, ...)
%
% INPUTS:
% A - the system matrix
% C - the observation matrix 
% Q - the system covariance 
% R - the observation covariance
% y(:)   - the observation at time t
% x(:) - E[X | y(:, 1:t-1)] prior mean
% V(:,:) - Cov[X | y(:, 1:t-1)] prior covariance
%
% OPTIONAL INPUTS (string/value pairs [default in brackets])
% 'initial' - 1 means x and V are taken as initial conditions (so A and Q are ignored) [0]
% 'u'     - u(:) the control signal at time t [ [] ]
% 'B'     - the input regression matrix
%
% OUTPUTS (where X is the hidden state being estimated)
%  xnew(:) =   E[ X | y(:, 1:t) ] 
%  Vnew(:,:) = Var[ X(t) | y(:, 1:t) ]
%  VVnew(:,:) = Cov[ X(t), X(t-1) | y(:, 1:t) ]
%  loglik = log P(y(:,t) | y(:,1:t-1)) log-likelihood of innovatio
 
% set default params
u = [];
B = [];
initial = 0;
 
args = varargin;
for i=1:2:length(args)
  switch args{i}
   case 'u', u = args{i+1};
   case 'B', B = args{i+1};
   case 'initial', initial = args{i+1};
   otherwise, error(['unrecognized argument ' args{i}])
  end
end
 
%  xpred(:) = E[X_t+1 | y(:, 1:t)]
%  Vpred(:,:) = Cov[X_t+1 | y(:, 1:t)]
 
if initial
  if isempty(u)
    xpred = x;
  else
    xpred = x + B*u;
  end
  Vpred = V;
else
  if isempty(u)
    xpred = A*x;
  else
    xpred = A*x + B*u;
  end
  Vpred = A*V*A' + Q;
end
 
e = y - C*xpred; % error (innovation)
n = length(e);
ss = length(A);
S = C*Vpred*C' + R;
Sinv = inv(S);
ss = length(V);
loglik = gaussian_prob(e, zeros(1,length(e)), S, 1);
K = Vpred*C'*Sinv; % Kalman gain matrix
% If there is no observation vector, set K = zeros(ss).
xnew = xpred + K*e;
Vnew = (eye(ss) - K*C)*Vpred;
VVnew = (eye(ss) - K*C)*A*V;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美久久久久免费| av亚洲精华国产精华精华| 精品视频一区二区不卡| 亚洲图片你懂的| 色婷婷精品久久二区二区蜜臀av | 亚洲一卡二卡三卡四卡五卡| av男人天堂一区| 亚洲精品视频免费观看| 99久久免费精品高清特色大片| 中文字幕色av一区二区三区| 成人激情免费网站| 亚洲欧美另类小说| 欧美专区亚洲专区| 天堂蜜桃91精品| 欧美tickle裸体挠脚心vk| 精品制服美女久久| 国产日韩欧美一区二区三区乱码| 国产成人精品三级| 亚洲免费观看高清在线观看| 欧美三级电影在线观看| 麻豆freexxxx性91精品| 久久免费午夜影院| 91美女在线视频| 亚洲高清一区二区三区| 91麻豆精品国产自产在线观看一区| 日韩影院精彩在线| 国产三级精品三级| 色婷婷综合激情| 免费国产亚洲视频| 国产精品美女一区二区三区| 在线观看一区二区精品视频| 捆绑紧缚一区二区三区视频| 国产午夜精品在线观看| 精品视频一区三区九区| 日韩不卡一区二区| 国产午夜精品久久久久久久 | 国产在线观看一区二区| 综合激情网...| 91精品视频网| 99国产精品久久久| 麻豆国产91在线播放| 成人免费视频在线观看| 欧美肥妇毛茸茸| voyeur盗摄精品| 久久精品国产澳门| 一区二区三区91| 精品88久久久久88久久久| 日本二三区不卡| 国产毛片精品视频| 丝袜亚洲精品中文字幕一区| 国产精品日产欧美久久久久| 欧美一级黄色片| 91极品美女在线| 成人av在线播放网址| 男女男精品视频| 亚洲柠檬福利资源导航| 久久久无码精品亚洲日韩按摩| 欧美日韩一区久久| 99精品视频一区| 国产精品99精品久久免费| 偷拍日韩校园综合在线| 亚洲女女做受ⅹxx高潮| 久久久久9999亚洲精品| 日韩区在线观看| 欧美三级视频在线观看| 色综合色综合色综合色综合色综合 | 日本va欧美va欧美va精品| 一区二区三区在线观看国产| 国产日产欧美一区二区三区| 日韩精品在线一区二区| 欧美日韩国产在线播放网站| 91麻豆蜜桃一区二区三区| 成人性生交大片免费看中文| 久久成人av少妇免费| 亚洲国产成人av网| 一区二区三区日韩在线观看| 亚洲欧美日韩中文字幕一区二区三区 | 大尺度一区二区| 国产永久精品大片wwwapp| 美女视频免费一区| 六月婷婷色综合| 美国毛片一区二区三区| 三级亚洲高清视频| 日韩高清中文字幕一区| 午夜av一区二区三区| 亚洲国产毛片aaaaa无费看| 亚洲综合清纯丝袜自拍| 一区二区三区丝袜| 亚洲一二三四在线观看| 亚洲午夜免费电影| 丝袜诱惑亚洲看片| 日韩福利电影在线| 美日韩黄色大片| 国产最新精品免费| 丰满岳乱妇一区二区三区| 国产成人精品免费视频网站| 国产成人精品三级| 91美女蜜桃在线| 欧美日韩一级大片网址| 欧美精品久久久久久久久老牛影院| 欧美精品在欧美一区二区少妇 | 欧美日韩精品久久久| 欧美男男青年gay1069videost | 韩国在线一区二区| 国产传媒日韩欧美成人| 97精品超碰一区二区三区| 91丨九色丨国产丨porny| 欧美优质美女网站| 欧美一卡2卡三卡4卡5免费| 精品盗摄一区二区三区| 国产精品欧美久久久久一区二区| 中文字幕在线视频一区| 亚洲一二三四在线| 韩日av一区二区| 9人人澡人人爽人人精品| 欧美日韩免费高清一区色橹橹| 在线播放亚洲一区| 国产欧美日韩三区| 亚洲精品福利视频网站| 日本不卡一区二区三区高清视频| 国产精品88av| 欧美在线免费播放| 久久免费看少妇高潮| 亚洲视频1区2区| 青青草原综合久久大伊人精品优势| 国产一区二区导航在线播放| 欧美综合在线视频| 国产成人在线影院| 欧美性猛片aaaaaaa做受| 日韩美女在线视频| 亚洲国产精华液网站w| 亚洲自拍偷拍网站| 韩国精品免费视频| 欧美色精品天天在线观看视频| 精品国产免费人成电影在线观看四季| 综合激情网...| 韩国av一区二区| 欧美日韩亚洲另类| 中文字幕欧美三区| 免费黄网站欧美| 欧美在线一区二区| 国产精品久久久久精k8| 久久99精品视频| 欧美视频自拍偷拍| 综合久久久久久久| 日韩视频123| 亚洲精品亚洲人成人网| 国产激情偷乱视频一区二区三区| 欧美午夜一区二区三区免费大片| 中文字幕欧美日本乱码一线二线| 日本中文字幕一区| 91国模大尺度私拍在线视频| 欧美国产一区二区| 激情成人综合网| 在线综合视频播放| 亚洲gay无套男同| 色综合视频在线观看| 国产精品久线在线观看| 国内精品在线播放| 欧美一区二区日韩| 午夜欧美在线一二页| 日本精品一区二区三区高清 | 色婷婷综合久久久久中文一区二区| 久久久久久久久99精品| 精品一区二区免费| 日韩一区二区三区高清免费看看| 亚洲aaa精品| 欧美男人的天堂一二区| 亚洲午夜精品久久久久久久久| 色播五月激情综合网| 日韩毛片精品高清免费| 成人av资源在线观看| 中文av一区二区| 成人一二三区视频| 国产精品久久久久影院| 成人激情av网| 综合欧美一区二区三区| 91亚洲国产成人精品一区二区三| 国产精品国产馆在线真实露脸 | 色综合久久久久综合99| 亚洲人精品午夜| 在线免费不卡视频| 亚洲丶国产丶欧美一区二区三区| 欧美日韩一区国产| 日韩av高清在线观看| 日韩一区二区在线播放| 久久成人羞羞网站| 国产欧美精品一区aⅴ影院| 国产成人av影院| 日韩毛片高清在线播放| 色婷婷综合久久| 日韩高清不卡一区二区| 精品女同一区二区| 国产成人av一区二区三区在线| 中文字幕不卡在线观看| 一本色道久久综合亚洲91| 亚洲五月六月丁香激情| 91精品国产福利| 国产成人av福利| 亚洲私人影院在线观看|