?? m10_5.m
字號(hào):
close all
clear
echo on
clc
% NEWFF——生成一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)
% TRAIN——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練
% SIM——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行仿真
pause
% 敲任意鍵開(kāi)始
clc
% 定義訓(xùn)練樣本
% P 為輸入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
% T 為目標(biāo)矢量
T=[-1, -1, 1, 1];
pause;
clc
% 創(chuàng)建一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)
net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')
% 當(dāng)前輸入層權(quán)值和閾值
inputWeights=net.IW{1,1}
inputbias=net.b{1}
% 當(dāng)前網(wǎng)絡(luò)層權(quán)值和閾值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 設(shè)置訓(xùn)練參數(shù)
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
pause
clc
% 調(diào)用 TRAINGDM 算法訓(xùn)練 BP 網(wǎng)絡(luò)
[net,tr]=train(net,P,T);
pause
clc
% 對(duì) BP 網(wǎng)絡(luò)進(jìn)行仿真
A = sim(net,P)
% 計(jì)算仿真誤差
E = T - A
MSE=mse(E)
pause
clc
x=[1;2;3;4];
figure;
plot(x,T,'*r',x,A,'ob')
axis([0 5 -1.5 1.5]);
clc
echo off
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -