?? journal.c
字號:
status = -EACCES; mlog_errno(status); goto done; } if (is_bad_inode(inode)) { status = -EACCES; iput(inode); inode = NULL; mlog_errno(status); goto done; } SET_INODE_JOURNAL(inode); status = ocfs2_meta_lock_full(inode, NULL, &bh, 1, OCFS2_META_LOCK_RECOVERY, NULL, 0); if (status < 0) { mlog(0, "status returned from ocfs2_meta_lock=%d\n", status); if (status != -ERESTARTSYS) mlog(ML_ERROR, "Could not lock journal!\n"); goto done; } got_lock = 1; fe = (struct ocfs2_dinode *) bh->b_data; flags = le32_to_cpu(fe->id1.journal1.ij_flags); if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { mlog(0, "No recovery required for node %d\n", node_num); goto done; } mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); status = ocfs2_force_read_journal(inode); if (status < 0) { mlog_errno(status); goto done; } mlog(0, "calling journal_init_inode\n"); journal = journal_init_inode(inode); if (journal == NULL) { mlog(ML_ERROR, "Linux journal layer error\n"); status = -EIO; goto done; } status = journal_load(journal); if (status < 0) { mlog_errno(status); if (!igrab(inode)) BUG(); journal_destroy(journal); goto done; } ocfs2_clear_journal_error(osb->sb, journal, slot_num); /* wipe the journal */ mlog(0, "flushing the journal.\n"); journal_lock_updates(journal); status = journal_flush(journal); journal_unlock_updates(journal); if (status < 0) mlog_errno(status); /* This will mark the node clean */ flags = le32_to_cpu(fe->id1.journal1.ij_flags); flags &= ~OCFS2_JOURNAL_DIRTY_FL; fe->id1.journal1.ij_flags = cpu_to_le32(flags); status = ocfs2_write_block(osb, bh, inode); if (status < 0) mlog_errno(status); if (!igrab(inode)) BUG(); journal_destroy(journal);done: /* drop the lock on this nodes journal */ if (got_lock) ocfs2_meta_unlock(inode, 1); if (inode) iput(inode); if (bh) brelse(bh); mlog_exit(status); return status;}/* * Do the most important parts of node recovery: * - Replay it's journal * - Stamp a clean local allocator file * - Stamp a clean truncate log * - Mark the node clean * * If this function completes without error, a node in OCFS2 can be * said to have been safely recovered. As a result, failure during the * second part of a nodes recovery process (local alloc recovery) is * far less concerning. */static int ocfs2_recover_node(struct ocfs2_super *osb, int node_num){ int status = 0; int slot_num; struct ocfs2_slot_info *si = osb->slot_info; struct ocfs2_dinode *la_copy = NULL; struct ocfs2_dinode *tl_copy = NULL; mlog_entry("(node_num=%d, osb->node_num = %d)\n", node_num, osb->node_num); mlog(0, "checking node %d\n", node_num); /* Should not ever be called to recover ourselves -- in that * case we should've called ocfs2_journal_load instead. */ if (osb->node_num == node_num) BUG(); slot_num = ocfs2_node_num_to_slot(si, node_num); if (slot_num == OCFS2_INVALID_SLOT) { status = 0; mlog(0, "no slot for this node, so no recovery required.\n"); goto done; } mlog(0, "node %d was using slot %d\n", node_num, slot_num); status = ocfs2_replay_journal(osb, node_num, slot_num); if (status < 0) { mlog_errno(status); goto done; } /* Stamp a clean local alloc file AFTER recovering the journal... */ status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); if (status < 0) { mlog_errno(status); goto done; } /* An error from begin_truncate_log_recovery is not * serious enough to warrant halting the rest of * recovery. */ status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); if (status < 0) mlog_errno(status); /* Likewise, this would be a strange but ultimately not so * harmful place to get an error... */ ocfs2_clear_slot(si, slot_num); status = ocfs2_update_disk_slots(osb, si); if (status < 0) mlog_errno(status); /* This will kfree the memory pointed to by la_copy and tl_copy */ ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, tl_copy, node_num); status = 0;done: mlog_exit(status); return status;}/* Test node liveness by trylocking his journal. If we get the lock, * we drop it here. Return 0 if we got the lock, -EAGAIN if node is * still alive (we couldn't get the lock) and < 0 on error. */static int ocfs2_trylock_journal(struct ocfs2_super *osb, int slot_num){ int status, flags; struct inode *inode = NULL; inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot_num); if (inode == NULL) { mlog(ML_ERROR, "access error\n"); status = -EACCES; goto bail; } if (is_bad_inode(inode)) { mlog(ML_ERROR, "access error (bad inode)\n"); iput(inode); inode = NULL; status = -EACCES; goto bail; } SET_INODE_JOURNAL(inode); flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags, NULL, 0); if (status < 0) { if (status != -EAGAIN) mlog_errno(status); goto bail; } ocfs2_meta_unlock(inode, 1);bail: if (inode) iput(inode); return status;}/* Call this underneath ocfs2_super_lock. It also assumes that the * slot info struct has been updated from disk. */int ocfs2_mark_dead_nodes(struct ocfs2_super *osb){ int status, i, node_num; struct ocfs2_slot_info *si = osb->slot_info; /* This is called with the super block cluster lock, so we * know that the slot map can't change underneath us. */ spin_lock(&si->si_lock); for(i = 0; i < si->si_num_slots; i++) { if (i == osb->slot_num) continue; if (ocfs2_is_empty_slot(si, i)) continue; node_num = si->si_global_node_nums[i]; if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num)) continue; spin_unlock(&si->si_lock); /* Ok, we have a slot occupied by another node which * is not in the recovery map. We trylock his journal * file here to test if he's alive. */ status = ocfs2_trylock_journal(osb, i); if (!status) { /* Since we're called from mount, we know that * the recovery thread can't race us on * setting / checking the recovery bits. */ ocfs2_recovery_thread(osb, node_num); } else if ((status < 0) && (status != -EAGAIN)) { mlog_errno(status); goto bail; } spin_lock(&si->si_lock); } spin_unlock(&si->si_lock); status = 0;bail: mlog_exit(status); return status;}static int ocfs2_queue_orphans(struct ocfs2_super *osb, int slot, int node_num, struct inode **head){ int status; struct inode *orphan_dir_inode = NULL; struct inode *iter; unsigned long offset, blk, local; struct buffer_head *bh = NULL; struct ocfs2_dir_entry *de; struct super_block *sb = osb->sb; struct ocfs2_inode_info *oi; orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, slot); if (!orphan_dir_inode) { status = -ENOENT; mlog_errno(status); return status; } mutex_lock(&orphan_dir_inode->i_mutex); status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0); if (status < 0) { mlog_errno(status); goto out; } offset = 0; iter = NULL; while(offset < i_size_read(orphan_dir_inode)) { blk = offset >> sb->s_blocksize_bits; bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0); if (!bh) status = -EINVAL; if (status < 0) { if (bh) brelse(bh); mlog_errno(status); goto out_unlock; } local = 0; while(offset < i_size_read(orphan_dir_inode) && local < sb->s_blocksize) { de = (struct ocfs2_dir_entry *) (bh->b_data + local); if (!ocfs2_check_dir_entry(orphan_dir_inode, de, bh, local)) { status = -EINVAL; mlog_errno(status); brelse(bh); goto out_unlock; } local += le16_to_cpu(de->rec_len); offset += le16_to_cpu(de->rec_len); /* I guess we silently fail on no inode? */ if (!le64_to_cpu(de->inode)) continue; if (de->file_type > OCFS2_FT_MAX) { mlog(ML_ERROR, "block %llu contains invalid de: " "inode = %"MLFu64", rec_len = %u, " "name_len = %u, file_type = %u, " "name='%.*s'\n", (unsigned long long)bh->b_blocknr, le64_to_cpu(de->inode), le16_to_cpu(de->rec_len), de->name_len, de->file_type, de->name_len, de->name); continue; } if (de->name_len == 1 && !strncmp(".", de->name, 1)) continue; if (de->name_len == 2 && !strncmp("..", de->name, 2)) continue; iter = ocfs2_iget(osb, le64_to_cpu(de->inode)); if (IS_ERR(iter)) continue; mlog(0, "queue orphan %"MLFu64"\n", OCFS2_I(iter)->ip_blkno); oi = OCFS2_I(iter); spin_lock(&oi->ip_lock); /* Delete voting may have set these on the assumption * that the other node would wipe them successfully. * If they are still in the node's orphan dir, we need * to reset that state. */ if (oi->ip_deleting_node == node_num) oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); /* Set the proper information to get us going into * ocfs2_delete_inode. */ oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; oi->ip_orphaned_slot = slot; spin_unlock(&oi->ip_lock); /* No locking is required for the next_orphan * queue as there is only ever a single * process doing orphan recovery. */ OCFS2_I(iter)->ip_next_orphan = *head; *head = iter; } brelse(bh); }out_unlock: ocfs2_meta_unlock(orphan_dir_inode, 0);out: mutex_unlock(&orphan_dir_inode->i_mutex); iput(orphan_dir_inode); return status;}static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, int slot){ int ret; spin_lock(&osb->osb_lock); ret = !osb->osb_orphan_wipes[slot]; spin_unlock(&osb->osb_lock); return ret;}static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, int slot){ spin_lock(&osb->osb_lock); /* Mark ourselves such that new processes in delete_inode() * know to quit early. */ ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); while (osb->osb_orphan_wipes[slot]) { mlog(0, "%u threads in iput from orphan dir %d, will wait\n", osb->osb_orphan_wipes[slot], slot); /* If any processes are already in the middle of an * orphan wipe on this dir, then we need to wait for * them. */ spin_unlock(&osb->osb_lock); wait_event_interruptible(osb->osb_wipe_event, ocfs2_orphan_recovery_can_continue(osb, slot)); spin_lock(&osb->osb_lock); } spin_unlock(&osb->osb_lock);}static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, int slot){ ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);}/* * Orphan recovery. Each mounted node has its own orphan dir which we * must run during recovery. Our strategy here is to build a list of * the inodes in the orphan dir and iget/iput them. The VFS does * (most) of the rest of the work. * * Orphan recovery can happen at any time, not just mount so we have a * couple of extra considerations. * * - We grab as many inodes as we can under the orphan dir lock - * doing iget() outside the orphan dir risks getting a reference on * an invalid inode. * - We must be sure not to deadlock with other processes on the * system wanting to run delete_inode(). This can happen when they go * to lock the orphan dir and the orphan recovery process attempts to * iget() inside the orphan dir lock. This can be avoided by * advertising our state to ocfs2_delete_inode(). */static int ocfs2_recover_orphans(struct ocfs2_super *osb, int slot, int node_num){ int ret = 0; struct inode *inode = NULL; struct inode *iter; struct ocfs2_inode_info *oi; mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); ocfs2_mark_recovering_orphan_dir(osb, slot); ret = ocfs2_queue_orphans(osb, slot, node_num, &inode); ocfs2_clear_recovering_orphan_dir(osb, slot); /* Error here should be noted, but we want to continue with as * many queued inodes as we've got. */ if (ret) mlog_errno(ret); while (inode) { oi = OCFS2_I(inode); mlog(0, "iput orphan %"MLFu64"\n", oi->ip_blkno); iter = oi->ip_next_orphan; iput(inode); inode = iter; } return ret;}static int ocfs2_wait_on_mount(struct ocfs2_super *osb){ /* This check is good because ocfs2 will wait on our recovery * thread before changing it to something other than MOUNTED * or DISABLED. */ wait_event(osb->osb_mount_event, atomic_read(&osb->vol_state) == VOLUME_MOUNTED || atomic_read(&osb->vol_state) == VOLUME_DISABLED); /* If there's an error on mount, then we may never get to the * MOUNTED flag, but this is set right before * dismount_volume() so we can trust it. */ if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { mlog(0, "mount error, exiting!\n"); return -EBUSY; } return 0;}static int ocfs2_commit_thread(void *arg){ int status; struct ocfs2_super *osb = arg; struct ocfs2_journal *journal = osb->journal; /* we can trust j_num_trans here because _should_stop() is only set in * shutdown and nobody other than ourselves should be able to start * transactions. committing on shutdown might take a few iterations * as final transactions put deleted inodes on the list */ while (!(kthread_should_stop() && atomic_read(&journal->j_num_trans) == 0)) { wait_event_interruptible(osb->checkpoint_event, atomic_read(&journal->j_num_trans) || kthread_should_stop()); status = ocfs2_commit_cache(osb); if (status < 0) mlog_errno(status); if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ mlog(ML_KTHREAD, "commit_thread: %u transactions pending on " "shutdown\n", atomic_read(&journal->j_num_trans)); } } return 0;}/* Look for a dirty journal without taking any cluster locks. Used for * hard readonly access to determine whether the file system journals * require recovery. */int ocfs2_check_journals_nolocks(struct ocfs2_super *osb){ int ret = 0; unsigned int slot; struct buffer_head *di_bh; struct ocfs2_dinode *di; struct inode *journal = NULL; for(slot = 0; slot < osb->max_slots; slot++) { journal = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot); if (!journal || is_bad_inode(journal)) { ret = -EACCES; mlog_errno(ret); goto out; } di_bh = NULL; ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh, 0, journal); if (ret < 0) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *) di_bh->b_data; if (le32_to_cpu(di->id1.journal1.ij_flags) & OCFS2_JOURNAL_DIRTY_FL) ret = -EROFS; brelse(di_bh); if (ret) break; }out: if (journal) iput(journal); return ret;}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -