?? fun_custo_nn.m
字號(hào):
function Fit = fun_custo_nn(x,C)
z=1;
for i=1:length(x)
if (x(i) == 1)
caract(:,z)=C(:,i);
z=z+1;
end
end
benigno = C(:,(length(x)+1))==0;
normal = C(:,(length(x)+1))==1;
tipo = double([benigno normal]); % targets for neural network
caract = caract';
tipo = tipo';
rand('seed', 491218382);
net = newff(caract,tipo,23); % Create a new feed forward network
%net = newff(caract,tipo,20); % Create a new feed forward network
[net,tr] = train(net,caract,tipo);
testInputs = caract(:,tr.testInd);
testTargets = tipo(:,tr.testInd);
out = sim(net,testInputs); % Get response from trained network
[y_out,I_out] = max(out);
[y_t,I_t] = max(testTargets);
diff = [I_t - 2*I_out];
f_f = length(find(diff==-2)); % Female crabs classified as Female
f_m = length(find(diff==-3)); % Female crabs classified as Male
m_m = length(find(diff==-1)); % Male crabs classified as Male
m_f = length(find(diff==0)); % Male crabs classified as Female
N = size(testInputs,2); % Number of testing samples
fprintf('Total testing samples: %d\n', N);
cm = [f_f f_m; m_f m_m]; % classification matrix
%cm_p = (cm ./ N) .* 100; % classification matrix in percentages
fprintf('Percentage Correct classification : %f%%\n', 100*(cm(1,1)+cm(2,2))/N);
fprintf('Percentage Incorrect classification : %f%%\n', 100*(cm(1,2)+cm(2,1))/N);
Fit=(cm(1,2)+cm(2,1))/N;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -