?? knearestneighbors.m
字號:
function [neighborIds neighborDistances] = kNearestNeighbors(dataMatrix, queryMatrix, k)
%--------------------------------------------------------------------------
% Program to find the k - nearest neighbors (kNN) within a set of points.
% Distance metric used: Euclidean distance
%
% Usage:
% [neighbors distances] = kNearestNeighbors(dataMatrix, queryMatrix, k);
% dataMatrix (N x D) - N vectors with dimensionality D (within which we search for the nearest neighbors)
% queryMatrix (M x D) - M query vectors with dimensionality D
% k (1 x 1) - Number of nearest neighbors desired
%
% Example:
% a = [1 1; 2 2; 3 2; 4 4; 5 6];
% b = [1 1; 2 1; 6 2];
% [neighbors distances] = kNearestNeighbors(a,b,2);
%
% Output:
% neighbors =
% 1 2
% 1 2
% 4 3
%
% distances =
% 0 1.4142
% 1.0000 1.0000
% 2.8284 3.0000
%--------------------------------------------------------------------------
neighborIds = zeros(size(queryMatrix,1),k);
neighborDistances = neighborIds;
numDataVectors = size(dataMatrix,1);
numQueryVectors = size(queryMatrix,1);
for i=1:numQueryVectors,
dist = sum((repmat(queryMatrix(i,:),numDataVectors,1)-dataMatrix).^2,2);
[sortval sortpos] = sort(dist,'ascend');
neighborIds(i,:) = sortpos(1:k);
neighborDistances(i,:) = sqrt(sortval(1:k));
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -