亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tmd1

?? svd 算法代碼 This directory contains instrumented SVDPACKC Version 1.0 (ANSI-C) programs for compiling
??
字號:
- Introduction        tms1:   sparse svd via trace minimization using 2-cyclic matrices	tms1.c is an ANSI-C code designed to find several of the largest        eigenvalues and eigenvectors of a real symmetric positive definite	matrix B.  The matrix B is assumed to be of the form                   B =  [alpha*I  A ],   where A is nrow by ncol                      [A'  alpha*I]    (nrow>>ncol) and sparse,	        and alpha is an upper bound for the largest singular value of        the matrix A.  Hence, the singular triplets of A are computed as         the eigenpairs of B.  If sigma is a singular value of the matrix        A, then (alpha+sigma) and (alpha-sigma) are eigenvalues of B.        The first nrow components of the eigenvectors correspond to        the left singular vectors of A, and the last ncol components of the        eigenvectors of B correspond to the right singular vectors of A.        A similar implementation is discussed in "Multiprocessor        Sparse SVD Algorithms and Applications", Ph.D. Thesis by M. Berry,        University of Illinois at Urbana-Champaign, October 1990.  This        version does not implement Chebyshev acceleration.  tms1.c uses        Ritz-shifting to accelerate convergence.        This is a parallel method which permits concurrent iterations of the        classical Conjugate Gradient method.  The loops which can be        parallelized are the for-loops containing calls to subroutines        cgt() and cgts().- Calling sequence	The calling sequence for procedure tsvd1 is        long tsvd1(FILE *fp_out1, long n, long p, long s, long job,                  double tol, double red, double *sig, long maxi,                  long *mem, long *itcgt, long *titer, double *time,                  double *res, long *mxv, double **work1, double **work2,                  double **work3, double **work4, double **work5,                  double **y, long **iwork, long *lwork)        The user specifies as part of the parameter list:                 fp_out1         ... a pointer to output file {FILE *}.        n               ... order of matrix B for SVD problem {long}.                            (n must not be greater than sum of number of                            rows and columns of sparse matrix A)        p               ... number of desired singular triplets (largest)                            of matrix A. {long}.         s               ... dimension of initial subspace {long}.                            (s should be greater than p; s=2*p is usually                            safe but more optimal results may be obtained                            if s is closer to p)        job             ... acceleration strategy switch {long}.                            job = 0, no acceleration is used.                            job = 1, ritz-shifting   is used.        maxi            ... maximum number of trace minimization steps                            allowed {long}.        tol             ... user-supplied tolerance for residuals of                            B-eigenpairs which approximate A-singular                            triplets {double}.        red             ... user-supplied tolerance for residual reduction                            to invoke Ritz-shifting (job=1) {double}.        lwork           ... one-dimensional array of length s used for                            for logic tests (values are 0 or 1).	         The following are work arrays malloc'ed within tsvd1:                            double **work1, double **work2,                            double **work3, double **work4,                             double **work5, double **y                            long **iwork	tsvd1 returns via its parameter list the following items:	         ierr            ... error flag for job parameter {long}.                            ierr=99, input parameter invalid.                            ierr= 0, input parameter   valid.        mem             ... estimate (in bytes) of memory required {long}.        mxv             ... 1-dim. array of length 3 containing matrix                            times vector counts {long}.                            mxv[0] = number of A *x. (x is a vector)                            mxv[1] = number of A'*x.                             mxv[2] = mxv[0] + mxv[1].        sig             ... 1-dim. array of length s containing the desired                            singular values of A {double}.        y               ... 2-dim. array containing the corresponding                            left and right singular vectors of matrix A                            {double}.  Each column of y stores                            the left singular vector in the first nrow                            elements and the right singular vector in the                            last ncol elements, where nrow is the number of                            rows of A and ncol is the number of columns of A.        titer           ... 1-dim. array of length s containing the number                            of trace min. steps required for each singular                            triplet of a {long}.        itcgt           ... 1-dim. array of length s containing the number                            of Conjugate Gradient steps taken for each                             singular triplet approximation of A {long}.        time            ... 1-dim. array of length 5 specifying timing                            breakdown (user cpu seconds) {double}.                            time[0] = Gram-Schmidt orthogonalization.                            time[1] = spectral decomposition.                            time[2] = convergence criteria.                            time[3] = Conjugate Gradient method.                            time[4] = total time (sum of the above).        res             ... 1-dim. array of length s containing the 2-norms                            of residuals for the singular triplets of A                            {double}.- User-supplied routines        For tms1.c, the user must specify multiplication by matrices        B and A' (subroutines opb and opat, respectively).        The specification of opb should look something like         void opb(long n, double *x, double *y, double shift)        so that opb takes a vector x and returns y = B*x, where        B is defined by                                             [D    A]                            B = [      ] , D =(alpha-shift)*I,                                [A'   D]          alpha is an upper bound for the largest singular value of A,        and shift is an approximate singular value of A.        The specification of opat should look something like                  void opat(double *x, double *y)        so that opat takes an m by 1 vector x and returns the n by 1        vector y = A'*x, where A is m by n (m >> n).	In tms1.c, we use the Harwell-Boeing sparse matrix format for	accessing elements of the sparse matrix A and its transpose (A').        Other sparse matrix formats can be used, of course.- Information        Please address all questions, comments, or corrections to:        M. W. Berry        Department of Computer Science        University of Tennessee        107 Ayres Hall        Knoxville, TN  37996-1301        email: berry@cs.utk.edu        phone: (615) 974-5067- File descriptions       tms1.c requires the include files tmsc.h and tmsg.h for       compilation.  Constants are defined in tmsc.h and all       global variables are defined in tmsg.h.  The input and       output files associated with tms1.c are listed below.             Code           Input         Output            ------      ------------    ---------            tms1.c      tmp1, matrix    tmo1,tmv1       The binary output file tmv1 containing approximate left       and right singular vectors will be created by tms1.c       if it does not already exist.  If you are running on       a Unix-based workstation you should uncomment the line                 /*   #define  UNIX_CREAT */       in the declarations prior to main() in tms1.c.       UNIX_CREAT specifies the use of the UNIX "creat" system       routine with the permissions defined by the PERMS constant                  #define PERMS 0664       You may adjust PERMS for the desired permissions on the       tmv1 file (default is Read/Write for user and group,       and Read for others).  Subsequent runs will be able to       open and overwrite these files with the default permissions.       tms1.c obtains its parameters specifying the       sparse SVD problem to be solved from the input file       tmp1. This parameter file contains the single line        <name>   p    s    job   tol    red    v    maxi       where        <name>     is the name of the data set containing nonzeros of A.        p          is an integer specifying the number of desired                   triplets;        s          is an integer specifying the subspace dimension to use.        job        is an integer specifying the type of acceleration to be                   used:                           job := 0, no acceleration used;                         job := 1, Ritz-shifting used;        tol        is a double specifying the residual tolerance for                    approximated singular triplets of A.        red        is a double specifying the residual reduction factor                   to inititate Ritz-shifting (when job = 1).        v          contains the string TRUE or FALSE to indicate when                   singular triplets are needed (TRUE) and when only                   singular values are needed (FALSE);        maxi       is an integer specifying the maximum number of iterations.        If the parameter "v" from tmp1 is set to "TRUE",        the unformatted output file tmv1 will contain the approximate        singular vectors written in the order u[1], v[1], u[2], v[2],        ..., u[p], v[p].  Here u[i] and v[i] denote the left and right        singular vectors, respectively, corresponding to the i-th        approximate singular value of A.        tms1.c is primarily designed to approximate the p-largest        singular triplets of A.  Users interested in the p-smallest        singular triplets via trace minimization should use tms2.c.- Sparse matrix format        tms1.c is designed to read input matrices that are stored        in the Harwell-Boeing sparse matrix format.  The nonzeros        of such matrices are stored in a compressed column-oriented        format.  The row indices and corresponding nonzero values        are stored by columns with a column start index array        whose entries contain pointers to the nonzero starting each        column.  tms1.c reads the sparse matrix data from the input        file called "matrix".        Each input file "matrix" should begin with a four-line header        record followed by three more records containing, in order,         the column-start pointers, the row indices, and the nonzero        numerical values.        The first line of the header consists of a 72-character title        and an 8-character key by which the matrices are referenced.        The second line can be used for comments or to indicate record        length for each index or value array.  Although this line is         generally ignored, A CHARACTER MUST BE PLACED ON THAT LINE.        The third line contains a three-character string denoting the        matrix type and the three integers specifying the number of rows,        columns, and nonzeros.  The fourth line which usually contains        input format for Fortran-77 I/O is ignored by our ANSI-C code.        The exact format is		"%72c %*s %*s %*s %d %d %d %*d"	for the first three lines of the header,		line 1      <title>         <key>		 	(col.  1 - 72) (col. 73 - 80)		line 2   <string>		line 3   <matrix type> nrow ncol nnzero 	and 		"%*s %*s %*s %*s"	for the last line of the header.		line 4   <string1> <string2> <string3> <string4>        Even though only the title and the integers specifying the        number of rows, columns, and nonzero elements are read, other        strings of input must be present in indicated positions.        Otherwise, the format of the "fscanf" statements must be         changed accordingly.- Reference         Sameh, A. H. and  Wisniewski, J. A., A trace minimization strategy        for the generalized eigevalue problem, SIAM J. Numer. Anal. 19:6,        1243-1259, 1982.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文字幕亚洲成人| 欧美日韩一区二区电影| 欧美精品一区二区精品网| 久久国产日韩欧美精品| 久久久久9999亚洲精品| 国产精品18久久久久| 国产精品系列在线| 欧美午夜一区二区| 丝袜诱惑亚洲看片| 欧美v国产在线一区二区三区| 国产xxx精品视频大全| 日韩成人一级片| 麻豆精品在线看| 国产成人精品免费| 成人av电影免费观看| 精品久久久久99| 欧美国产日韩a欧美在线观看| 亚洲色图另类专区| 精品在线免费视频| 91丨九色porny丨蝌蚪| 91精品国产一区二区三区蜜臀| 久久久久国产精品厨房| 亚洲高清不卡在线| 国产一区在线不卡| 在线成人免费视频| 中文字幕一区二区视频| 国产精品资源在线| 国产精品一品视频| 97久久超碰国产精品| 色婷婷国产精品久久包臀| 国产原创一区二区三区| 亚洲成人av一区| 久久国产欧美日韩精品| 欧美性猛交xxxxxxxx| 尤物视频一区二区| 国产女主播一区| 国产精品美女久久久久久久久 | 欧美人妇做爰xxxⅹ性高电影| 麻豆成人免费电影| 亚洲黄色片在线观看| 亚洲精品在线网站| 欧美日本不卡视频| 91农村精品一区二区在线| 麻豆精品在线播放| 怡红院av一区二区三区| 国产日韩欧美精品综合| 日韩亚洲欧美综合| 欧美视频一区在线| 色综合天天狠狠| 国产成人精品影视| 久久99精品久久久久婷婷| 亚洲国产美国国产综合一区二区| 国产精品久久午夜夜伦鲁鲁| 欧美一级二级在线观看| 欧美色图12p| 色系网站成人免费| 91一区一区三区| caoporen国产精品视频| 国产黄色精品视频| 国产一区二区女| 狠狠色丁香婷婷综合| 久久99精品国产91久久来源| 日韩—二三区免费观看av| 亚洲h动漫在线| 亚洲国产人成综合网站| 夜色激情一区二区| 一区二区激情小说| 亚洲精品乱码久久久久久| 亚洲欧洲国产专区| 中文字幕一区三区| 中文字幕一区二区三区不卡| 国产日本欧美一区二区| 欧美激情一区二区三区不卡| 久久久精品2019中文字幕之3| 精品理论电影在线| 久久综合狠狠综合久久综合88| 欧美大度的电影原声| 日韩三级视频中文字幕| 欧美一区二区三区在线观看| 日韩欧美在线1卡| 欧美成人官网二区| 国产视频一区二区在线| 国产精品狼人久久影院观看方式| 中文字幕va一区二区三区| 1024国产精品| 夜夜嗨av一区二区三区| 日韩av电影天堂| 精品制服美女久久| 国产成人8x视频一区二区 | 喷白浆一区二区| 美女mm1313爽爽久久久蜜臀| 欧美a一区二区| 国内一区二区在线| 成人性视频网站| 一本大道av伊人久久综合| 在线观看亚洲精品视频| 欧美一级理论性理论a| 欧美精品一区二区三区蜜桃| 国产日韩精品一区二区三区在线| 18成人在线观看| 日韩中文字幕1| 国产在线视频一区二区三区| 99综合影院在线| 欧美日韩免费观看一区二区三区| 日韩精品一区二区三区在线播放| 久久久91精品国产一区二区三区| 国产精品一二一区| 日韩欧美亚洲国产另类| 91亚洲精品久久久蜜桃| 欧美日韩激情一区二区| 一区二区三区四区亚洲| 91同城在线观看| 精品99久久久久久| 国产精品久久久久9999吃药| 久久国产精品色婷婷| 日韩欧美在线123| 欧美三级中文字幕在线观看| 日韩一级二级三级精品视频| 国产欧美日韩在线视频| 亚洲午夜日本在线观看| 国产伦理精品不卡| 欧美在线你懂得| 久久久久久久久免费| 亚洲va国产va欧美va观看| 成人一区二区在线观看| 6080国产精品一区二区| 亚洲欧美偷拍三级| 国内精品写真在线观看| 欧美网站大全在线观看| 国产精品女人毛片| 久久66热re国产| 欧美日韩精品综合在线| 国产精品久久福利| 精品一二三四区| 欧美日韩极品在线观看一区| 中文字幕一区二区三区视频| 精品久久人人做人人爱| 亚洲福利一二三区| 欧美日本韩国一区二区三区视频| www激情久久| 麻豆精品视频在线观看视频| 欧美网站一区二区| 亚洲午夜视频在线观看| 91视频在线看| 国产精品精品国产色婷婷| 成人avav在线| 亚洲欧美日韩在线| 欧美群妇大交群中文字幕| 青娱乐精品视频在线| 日韩影视精彩在线| 91视频免费观看| 综合久久给合久久狠狠狠97色| 国产乱码字幕精品高清av | 欧美一区二区三区啪啪| 亚洲电影在线免费观看| 欧美精品v日韩精品v韩国精品v| 亚洲精品视频在线观看免费| 91色视频在线| 亚洲福利视频一区二区| 5858s免费视频成人| 国产综合久久久久影院| 一区在线播放视频| 欧美日韩亚洲综合在线| 日韩精品电影在线| 国产亚洲短视频| 欧美亚洲一区二区在线观看| 免费日本视频一区| 日本一区二区三区视频视频| 99久久国产综合色|国产精品| 亚洲电影视频在线| 精品剧情在线观看| 色悠久久久久综合欧美99| 国产一区二区福利| 中文字幕在线视频一区| 国产宾馆实践打屁股91| 日韩欧美第一区| 91啪亚洲精品| 久久久国产午夜精品| 日韩精品一区第一页| 美女视频黄 久久| 色呦呦国产精品| 一级中文字幕一区二区| 欧美视频一区在线观看| 青青草91视频| 久久嫩草精品久久久久| 成人性视频网站| 亚洲精品美国一| 欧美一区二区三区在线看| 精品一区中文字幕| 国产精品麻豆视频| 欧美日韩免费观看一区三区| 久久电影网电视剧免费观看| 极品少妇xxxx精品少妇偷拍| 亚洲日本乱码在线观看| 欧美经典三级视频一区二区三区| 日韩欧美一区二区三区在线| 欧美一区二区视频在线观看2020| 色综合久久久久综合99| 色综合激情五月| 91国内精品野花午夜精品|