亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? library for SVMclassification and regression. It solves C-SVM classification, nu-SVM classification
??
字號:
This directory includes some useful codes:1. subset selection tools.2. parameter selection tools.3. LIBSVM format checking toolsPart I: Subset selection toolsIntroduction============Training large data is time consuming. Sometimes one should work on asmaller subset first. The python script subset.py randomly selects aspecified number of samples. For classification data, we provide astratified selection to ensure the same class distribution in thesubset.Usage: subset.py [options] dataset number [output1] [output2]This script selects a subset of the given data set.options:-s method : method of selection (default 0)     0 -- stratified selection (classification only)     1 -- random selectionoutput1 : the subset (optional)output2 : the rest of data (optional)If output1 is omitted, the subset will be printed on the screen.Example=======> python subset.py heart_scale 100 file1 file2From heart_scale 100 samples are randomly selected and stored infile1. All remaining instances are stored in file2.Part II: Parameter Selection ToolsIntroduction============grid.py is a parameter selection tool for C-SVM classification usingthe RBF (radial basis function) kernel. It uses cross validation (CV)technique to estimate the accuracy of each parameter combination inthe specified range and helps you to decide the best parameters foryour problem.grid.py directly executes libsvm binaries (so no python binding is needed)for cross validation and then draw contour of CV accuracy using gnuplot.You must have libsvm and gnuplot installed before using it. The package gnuplot is available at http://www.gnuplot.info/On Mac OSX, the precompiled gnuplot file needs the library Aquarterm,which thus must be installed as well. In addition, this version ofgnuplot does not support png, so you need to change "set term pngtransparent small" and use other image formats. For example, you mayhave "set term pbm small color".Usage: grid.py [-log2c begin,end,step] [-log2g begin,end,step] [-v fold]        [-svmtrain pathname] [-gnuplot pathname] [-out pathname] [-png pathname]         [additional parameters for svm-train] datasetThe program conducts v-fold cross validation using parameter C (and gamma) = 2^begin, 2^(begin+step), ..., 2^end. You can specify where the libsvm executable and gnuplot are using the-svmtrain and -gnuplot parameters.For windows users, please use pgnuplot.exe. If you are using gnuplot3.7.1, please upgrade to version 3.7.3 or higher. The version 3.7.1has a bug. If you use cygwin on windows, please use gunplot-x11.Example=======> python grid.py -log2c -5,5,1 -log2g -4,0,1 -v 5 -m 300 heart_scaleUsers (in particular MS Windows users) may need to specify the path ofexecutable files. You can either change paths in the beginning ofgrid.py or specify them in the command line. For example,> grid.py -log2c -5,5,1 -svmtrain c:\libsvm\windows\svmtrain.exe -gnuplot c:\tmp\gnuplot\bin\pgnuplot.exe -v 10 heart_scaleOutput: two filesdataset.png: the contour plot of the CV accuracy (generated by gnuplot)dataset.out: the log of accuracy at each (C,gamma)Parallel grid search (experimental)===================================You can conduct a parallel grid search by dispatching jobs to a cluster of computers which share the same file system. First, you add machine names in grid.py:telnet_workers = ["linux1", "linux5", "linux5"]The same machine (e.g., linux5 here) can be listed more than once ifit has multiple CPUs or has more RAM. If the local machine is thebest, you can also enlarge the nr_local_worker. For example:nr_local_worker = 2Example:> python grid.py heart_scalePassword: ********login ok linux1login ok linux5login ok linux5...The password is the one used for entering your system. If -log2c, -log2g, or-v is not specified, default values are used. If your system uses ssh instead of telnet, you should setup ssh first so thatthe authentication works without asking a password, and list the computer namesin ssh_workers.Part III: LIBSVM format checking toolsIntroduction============`svm-train' conducts only a simple check of the input data. To do adetailed check, we provide a python script `checkdata.py.'Usage: checkdata.py dataset This tool is written by Rong-En Fan at National Taiwan University.Example=======> cat bad_data1 3:1 2:4> python checkdata.py bad_dataline 1: feature indices must be in an ascending order, previous/current features 3:1 2:4Found 1 lines with error.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天天综合日日夜夜精品| 国产精品白丝在线| 日韩欧美激情四射| 欧美三级电影在线看| 一本到一区二区三区| 成人av午夜电影| 成人一区二区三区视频在线观看| 国产一区二区三区在线观看精品| 日韩av网站免费在线| 久久精品国产亚洲高清剧情介绍 | 理论片日本一区| 日本亚洲一区二区| 蜜臀av性久久久久蜜臀aⅴ流畅| 奇米精品一区二区三区在线观看 | 亚洲精品国产a久久久久久| 亚洲欧美中日韩| 亚洲综合在线电影| 麻豆中文一区二区| 成人av免费在线| 欧美日韩一区不卡| 精品日韩一区二区三区| 国产人成一区二区三区影院| 国产精品日日摸夜夜摸av| 亚洲免费伊人电影| 日韩国产精品久久| 成人免费av在线| 欧美日韩成人一区| 精品久久一区二区| 国产精品免费网站在线观看| 亚洲一区二区视频| 国产一二精品视频| 欧美日韩一区二区三区不卡| 精品剧情v国产在线观看在线| 中文字幕在线一区| 同产精品九九九| 国产不卡视频在线观看| 欧美亚州韩日在线看免费版国语版| 欧美一区二区三区免费大片 | 亚洲人成伊人成综合网小说| 亚洲国产美国国产综合一区二区| 久久99国产精品久久99| 91亚洲精华国产精华精华液| 欧美变态tickle挠乳网站| 亚洲色图丝袜美腿| 久久国产精品72免费观看| 色综合久久中文字幕综合网| 久久先锋影音av| 天天操天天干天天综合网| 99久久精品国产毛片| 91精品国产欧美一区二区| 亚洲品质自拍视频| 国产精品综合一区二区| 欧美日韩在线不卡| 亚洲精品国产精华液| 国产一区二区福利| 日韩一区二区精品| 亚洲3atv精品一区二区三区| 丁香桃色午夜亚洲一区二区三区| 欧美一区二区日韩一区二区| 一区二区三区中文免费| 成人av手机在线观看| 久久人人97超碰com| 日本午夜精品一区二区三区电影| 在线视频欧美精品| 一区二区三区四区高清精品免费观看| 国产乱对白刺激视频不卡| 日韩一级完整毛片| 亚洲成a人片在线不卡一二三区| 99久久精品免费看国产免费软件| 国产婷婷色一区二区三区四区| 美女看a上一区| 欧美一区二区三区视频在线观看 | 国产高清成人在线| 久久影视一区二区| 国产在线不卡视频| 精品久久国产字幕高潮| 久久精品国产秦先生| 欧美一卡2卡3卡4卡| 美国三级日本三级久久99 | 久久国产尿小便嘘嘘尿| 3atv在线一区二区三区| 亚洲va国产天堂va久久en| 欧美午夜电影网| 亚洲444eee在线观看| 日韩一区二区三区在线观看| 久久国产精品99久久人人澡| 91精品国产入口| 蜜芽一区二区三区| 久久一区二区三区国产精品| 高清成人在线观看| 亚洲欧美电影院| 色综合天天天天做夜夜夜夜做| 亚洲男人的天堂在线aⅴ视频| 色先锋久久av资源部| 亚洲成人精品在线观看| 欧美一级片在线观看| 视频精品一区二区| 欧美精品一区二区三区久久久 | 国产精品久久久99| 91激情在线视频| 奇米在线7777在线精品| 国产欧美日韩视频在线观看| 97精品视频在线观看自产线路二| 亚洲永久精品国产| 26uuu国产一区二区三区| 国产二区国产一区在线观看| 亚洲欧美在线视频| 色综合网站在线| 精品一区二区三区欧美| 国产精品入口麻豆原神| 欧美日韩国产一级| 国产一区激情在线| 亚洲一区日韩精品中文字幕| 91精品国产综合久久久久久| 成人丝袜18视频在线观看| 一区二区三区视频在线看| 日韩一区二区在线观看视频| 不卡的看片网站| 日韩国产在线观看一区| 中文字幕精品三区| 欧美美女一区二区在线观看| 国产成人午夜片在线观看高清观看| 亚洲人吸女人奶水| 337p粉嫩大胆色噜噜噜噜亚洲| 色综合天天天天做夜夜夜夜做| 老司机午夜精品99久久| 亚洲一区二区欧美激情| 亚洲国产精华液网站w| 日韩精品一区二区三区在线| 色欲综合视频天天天| 国产激情一区二区三区四区| 日韩精彩视频在线观看| 一区二区三区免费网站| 国产午夜久久久久| 日韩精品一区二区三区在线观看| 91精品福利在线| 91小视频免费看| 成人妖精视频yjsp地址| 国产在线视频一区二区| 热久久国产精品| 图片区小说区区亚洲影院| 亚洲欧洲日产国产综合网| 国产亚洲精品aa| 久久网这里都是精品| 欧美大胆一级视频| 欧美一区二区三区色| 欧美综合在线视频| 色噜噜久久综合| 一本大道综合伊人精品热热| 99精品久久只有精品| av在线播放不卡| 不卡视频在线观看| 91首页免费视频| 色综合av在线| 欧美视频一二三区| 欧美日产国产精品| 欧美精品v国产精品v日韩精品 | 9久草视频在线视频精品| 国产凹凸在线观看一区二区| 国产酒店精品激情| 成人黄色国产精品网站大全在线免费观看| 久久精品国产99国产| 精品一区二区三区影院在线午夜| 国产一区三区三区| 成人丝袜视频网| 在线观看视频一区二区 | 国内精品视频一区二区三区八戒| 久久电影网电视剧免费观看| 国产一区二区三区免费| 国产精品白丝av| 成人免费视频app| 色先锋久久av资源部| 51午夜精品国产| 日韩午夜在线观看| 2020国产精品| 国产精品久久久久三级| 亚洲精品菠萝久久久久久久| 亚洲国产视频网站| 极品尤物av久久免费看| 国产宾馆实践打屁股91| 成人精品在线视频观看| 欧美日韩另类国产亚洲欧美一级| 91精品蜜臀在线一区尤物| 久久久影院官网| 亚洲自拍偷拍综合| 久草中文综合在线| 91片黄在线观看| 欧美一区二区三区公司| 中文字幕第一区第二区| 亚洲国产精品麻豆| 韩国av一区二区| 欧洲精品一区二区三区在线观看| 欧美一区二区三区的| 成人免费在线观看入口| 日本不卡一区二区三区高清视频| 成人在线综合网| 日韩欧美在线一区二区三区| 亚洲女同一区二区| 国内精品国产三级国产a久久| 在线观看成人免费视频|